Saturday, October 13, 2012

When You Look at the Cosmos......?


Scientists have turned up rare evidence that space-time is smooth as Einstein predicted, while pushing closer to a complete theory of gravity. From NASA Goddard Space Flight Center, Fermi Gamma Ray Space Telescope. See: SpaceRip.com




.....you might be enamored with how you might see the cosmos as I am.

The question of continuity of expression as some mathematical construct with out seeing the uniqueness of  lets say lensing....how might we associate with such dynamics of that continuity?

According to Einstein's theory of general relativity, the sun's gravity causes starlight to bend, shifting the apparent position of stars in the sky.


It's the way in which the Lagrangian expressions are understood or how satellite travel helps to denote the pathways throughout our universe. Are traverse pathways being suggested as we might see the holes in the cosmos as unique just to satellite travel alone? Ask yourself how the photon is influenced then? What pathways are traveled that we may see the evidence on the screen that such association measure in the spectrum are revealing of events across space and time.

Astronomers use the light-bending properties of gravity to view very distant galaxies--such as the arc shapes in this image--in a technique called "gravitational lensing.





This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel.




See Also:

No comments:

Post a Comment