In the search for a quantum theory of gravity it is crucial to find experimental access to quantum gravitational effects. Since these are expected to be very small at observationally accessible scales it is advantageous to consider processes with no tree-level contribution in the Standard Model, such as photon-photon scattering. We examine the implications of asymptotically safe quantum gravity in a setting with extra dimensions for this case, and point out that various near-future photon-collider setups, employing either electron or muon colliders, or even a purely laser-based setup, could provide a first observational window into the quantum gravity regime. Can we see quantum gravity? Photons in the asymptotic-safety scenario
Experimental Search for Quantum Gravity: the hard facts
October 22-25, 2012
Perimeter Institute
Scientific area: quantum gravity
Quantum Gravity tries to answer some of the most fundamental questions about the quantum nature of spacetime. To make progress in this area it is mandatory to establish a contact to observations and experiments and to learn what the "hard facts" on quantum gravity are, that nature provides us with.
Quantum Gravity is a field where several approaches, based on different principles and assumptions, develop in parallel. At present it is not clear whether and how some of the approaches are compatible, and might share common properties. This meeting will draw on a diverse set of physicists who come to make proposals for quantum gravity phenomenology from a broad range of perspectives, including path-integral-inspired as well as canonical, and discrete as well as continuum-based approaches, providing a platform to exchange ideas with researchers working on theoretical and experimental aspects of different proposals.
This will be the third in a series of meetings, the first of which was held at PI (2007), the second at NORDITA (2010).
This meeting looks to the future and has two primary goals: 1) to assess the status of different proposals for QG phenomenology in the light of recent experimental results from Fermi, Auger, LHC etc. and 2) to discuss and stimulate new ideas and proposals, coming from a diverse set of viewpoints about quantum spacetime.
In order to allow for a fruitful exchange of ideas across different approaches, and between experimental and theoretical researchers, the workshop will lay a main focus on structured discussion sessions with short (15 min.) presentations. These are mainly intended for an exchange of ideas, and a discussion and development of new possibilities, thus participants are strongly encouraged to present new ideas and work in progress.
See Also:
No comments:
Post a Comment