Monday, February 22, 2010

Physicists Discover How to Entangle at High Temperatures

While I do not just like to echo in the world of information it is important to me to see how we can use entanglement to give us information about quantum gravity. Is it possible?


Entanglement is the weird quantum process in which two objects share the same existence. So a measurement on one object immediately influences the other, not matter how far apart they may be.
Entanglement is a strange and fragile thing. Sneeze and it vanishes. The problem is that entanglement is destroyed by any interaction with the environment and these interactions are hard to prevent. So physicists have only ever been able to study and exploit entanglement in systems that do not interact easily with the environment, such as photons, or at temperatures close to absolute zero where the environment becomes more benign.

In fact, physicists believe that there is a fundamental limit to the thermal energies at which entanglement can be usefully exploited. And this limit is tiny, comparable to very lowest temperatures.
Today, Fernando Galve at the University of the Balearic Islands in Spain and a few buddies, show how this limit can be dramatically increased. The key behind their idea is the notion of a squeezed state.
In quantum mechanics, Heisenberg's uncertainty principle places important limits on how well certain pairs of complementary properties can be observed. For example, the more accurately you measure position, the less well you can determine momentum. The same is true of energy and time and also of the phase and amplitude of a quantum state.

Physicists have learnt how to play around with these complementary observables to optimise the way they make measurements. They've discovered that they can trade their knowledge of one complementary observable for an improvement in the other. See more here:Physicists Discover How to Entangle at High Temperatures

No comments:

Post a Comment