Thursday, August 31, 2006

Now, here is a SuperNova for Real

The Crab Nebula from VLT Credit: FORS Team, 8.2-meter VLT, ESO



Now the "ultimate proof" is to hold in our hands the matters defined by objects. This is the culmination of all dimensional perspectives, being "condensed to the moment" we hold the stardust samples in our hands. In that case, it may be of a meteorite/comet in passing?

Now we are going back to our computers for a moment here.

Now we know what can be done in terms of computer programming, and what simulations of events can do for us, but what happens, when we look out into space and watch events unfold as they do in our models?

Interaction with matter
In passing through matter, gamma radiation ionizes via three main processes: the photoelectric effect, Compton scattering, and pair production.


Photoelectric Effect: This describes the case in which a gamma photon interacts with and transfers its energy to an atomic electron, ejecting that electron from the atom. The kinetic energy of the resulting photoelectron is equal to the energy of the incident gamma photon minus the binding energy of the electron. The photoelectric effect is the dominant energy transfer mechanism for x-ray and gamma ray photons with energies below 50 keV (thousand electron volts), but it is much less important at higher energies.
Compton Scattering: This is an interaction in which an incident gamma photon loses enough energy to an atomic electron to cause its ejection, with the remainder of the original photon's energy being emitted as a new, lower energy gamma photon with an emission direction different from that of the incident gamma photon. The probability of Compton scatter decreases with increasing photon energy. Compton scattering is thought to be the principal absorption mechanism for gamma rays in the intermediate energy range 100 keV to 10 MeV (megaelectronvolts), an energy spectrum which includes most gamma radiation present in a nuclear explosion. Compton scattering is relatively independent of the atomic number of the absorbing material.
Pair Production: By interaction via the Coulomb force, in the vicinity of the nucleus, the energy of the incident photon is spontaneously converted into the mass of an electron-positron pair. A positron is the anti-matter equivalent of an electron; it has the same mass as an electron, but it has a positive charge equal in strength to the negative charge of an electron. Energy in excess of the equivalent rest mass of the two particles (1.02 MeV) appears as the kinetic energy of the pair and the recoil nucleus. The positron has a very short lifetime (about 10-8 seconds). At the end of its range, it combines with a free electron. The entire mass of these two particles is then converted into two gamma photons of 0.51 MeV energy each.


I wanted to include this information about Gamma Rays first so you understand what happens in space, as we get this information. I want to show you that there is faster ways that we recognize these events, and this includes, recognition of what the spacetime fabric tells us from one place in the universe, to another.

Does it look the same? Check out, "Going SuperNova 3Dgif by Quasar9"

Now, take a look at this below.

Four hundred years ago, sky watchers, including the famous astronomer Johannes Kepler, were startled by the sudden appearance of a "new star" in the western sky, rivaling the brilliance of the nearby planets. Now, astronomers using NASA's three Great Observatories are unraveling the mysteries of the expanding remains of Kepler's supernova, the last such object seen to explode in our Milky Way galaxy


What can we learn about our modelling capabilties, and what can we learn about the events in space that need to be further "mapped?" How shall we do this?

Gamma ray indicators prepared us for something that was happening. Now with this "advance notice" we look back, and watch it unfold?

A new image taken with NASA's Hubble Space Telescope provides a detailed look at the tattered remains of a supernova explosion known as Cassiopeia A (Cas A). It is the youngest known remnant from a supernova explosion in the Milky Way. The new Hubble image shows the complex and intricate structure of the star's shattered fragments. The image is a composite made from 18 separate images taken in December 2004 using Hubble's Advanced Camera for Surveys (ACS).


If advance indication are possible besides gamma ray detection, then what form would this take? Could we map the events as we learn of what happen in LIGO or LIsa operations, and how the "speed of light" is effected in a vacuum?

Now this comes to the second part, and question of indications of information released to the "bulk perspective" as the event unfolds as this SuperNova is.

Bulk:
Note that in the type IIA and type IIB string theories closed strings are allowed to move everywhere throughout the ten-dimensional space-time (called the bulk), while open strings have their ends attached to D-branes, which are membranes of lower dimensionality (their dimension is odd - 1,3,5,7 or 9 - in type IIA and even - 0,2,4,6 or 8 - in type IIB, including the time direction).


Now advancement in model assumption pushes perspective where it did not exist before.

You had to understand the nature of "GR" in pushing perspective, in the way this post is unfolding. Gamma ray indicators, are events that are "tied to the brane" and in this sense, information is held to the brane. The "fermion principle" and identifcation of Type IIA and IIB is necessary, as part of the move to M theory?

Thus when we look at Gamma rays they are not "separate from the event" while the bulk perspective, allows geoemtrics to invade the "new world" beyond the confines of non-euclidean geometries.

As I pointed out, the succession of Maxwell and all the eqautions (let there be light) are still dveloped from the center outwards, and in this perspective gravitational waves wrap the event. Thus the "outer most covering" is a much higher vision and dynamical nature, then what we assume as "ripples in space."

Bulk perspectve is a necessary revision/addition to how we think and include gravitational waves, by incorporating the "gravitonic perception" as a force carrier and extension of the Standard model.

While it has been thought by me to include the "Tachyon question", as a faster then light entity, the thought is still of some puzzlement that this information precedes the gamma ray detection, and hence, serves to elucidate the understanding of our perceptions of the early events as they unfold, as a more "sounding" reason to how we look at these early events?

If those whose views have been entertaining spacetravel, as I have exemplified in previous post, then it was of some importance that model enhancement would serve to help the future of spacetravel in all it's outcomes, as we now engaged, as ISCAP is engaging.

See:

  • Einstein@Home


  • LIGO:
  • No comments:

    Post a Comment