"My heart leaps up when I behold A rainbow in the sky."
William Wordsworth-- My Heart Leaps Up
This post is based on "the production" and not the detection of gravitational waves.
It does serve it's purpose, that I explain what I have in terms of detection, that one moves from that process, to actual production of them.:) Now I am not talking about Taylor and Hulse and PSR 1913+16 either.
Dr. Kip Thorne, Caltech 01-Relativity-The First 20th Century Revolution
Weber developed an experiment using a large suspended bar of aluminum, with a high resonant Q at a frequency of about 1 kH; the oscillation of the bar after it had been excited could be measured by a series of piezoelectric crystals mounted on it. The output of the system was put on a chart recorder like those used to record earthquakes. Weber studied the excursions of the pen to look for the occasional tone of a gravitational wave passing through the bar...
Nor am I talking about Kip Thorne, Webber, or Ligo operation for that matter.
I am actually talking about the creation of gravitational waves.
Now imagine that you see this "slide of light," and you were to think that in front of you, this would help you see where the gravitational field would be falling away from you. You would be sliding "ahead" from where you pointed and created this effect.
So now you get the idea here of what I propose in the production of gravitational waves versus the detection of them?:)
Up until this point in time, I've used the term "generate" to describe the capability of producing a gravitational field, but since I'm not aware of any way of creating a gravitational field from nothing, a more accurate term might be to "access and amplify" a gravitational field. And this is what I mean when I use the term "generate". To understand how gravity is generated or "accessed and amplified", you must first know what gravity is.
While watching a television program I listened to what he had to say. For people interested in gravity, Quantum or otherwise, this topic helped captured my change in thinking that is postulated, and one I am giving thought right now.
The Problem
Gravitational waves are produced when there is a change in the curvature of spacetime. Since the shape of spacetime depends only on how mass is distributed, events that change the distribution of mass cause gravitational waves. It takes events with a lot of energy to make gravitational waves that we can detect because spacetime is not very elastic. Remember the bowling ball analogy? Space-time is like a stiff trampoline, one that only sinks when you put something very heavy on it.
So if we are to consider such a thing how would I go about it? Perhaps, "jumping up and down?":)
“Every time you accelerate—say by jumping up and down—you’re generating gravitational waves,” says Rainer Weiss, Professor Emeritus of Physics at MIT. “There’s no doubt of it.” But just standing there won’t cut the mustard. To make a wave, your mass has to both move (have velocity) and have acceleration (change the rate of motion, direction, or both).
Still, don’t get your hopes up. No matter how fast you jump, sprint, or cartwheel, the resulting warp your waves make on space is so weak that it’s utterly unmeasurable—perhaps 100,000,000,000,000,000,000,000 times less so than the warp made by massive exploding space objects. And LIGO has a tough enough time measuring those.
So there are questions on my mind, about gravity creation.
Plato writes:
Dorigo,
I am interested as a lay person in the collider experiments and wondered about "gravitational wave production."
Considering quark gluon levels reached I wondered about the strength and the weakness as a measure of gravitational waves within that collider action. If microscopic blackhole are created then would it be wrong to observe, variation of gravity within the domain of the collider itself?
regards,
See following comment posted here.
Dear Plato,
quarks are microscopic bodies. The gravitational effects associated with the motion and interaction of masses that small are ridiculously small.
In theories contemplating a low quantum gravity scale, black holes could in principle be created in high energy collisions, but if a chance of detecting their creation exists, it is not by gravitational effects, which remain billions of billions of billions of billions (and then some) of times smaller than those caused by strong interactions.
Please check my post on Lisa Randall’s seminar (Sept. 29th), or the one on the seminar given by Steve Giddings last March. There is reading material that I tried to make accessible to most there.
Cheers,
T.
I will be loking at this in much more detail. Something that immediately came to mind is Gran Sasso. "Muon creation" from the particle collisions. See: Neutrino Mixing in Sixty Seconds.
This summer, CERN gave the starting signal for the long-distance neutrino race to Italy. The CNGS facility (CERN Neutrinos to Gran Sasso), embedded in the laboratory's accelerator complex, produced its first neutrino beam. For the first time, billions of neutrinos were sent through the Earth's crust to the Gran Sasso laboratory, 732 kilometres away in Italy, a journey at almost the speed of light which they completed in less than 2.5 milliseconds. The OPERA experiment at the Gran Sasso laboratory was then commissioned, recording the first neutrino tracks. See Strangelets and Strange Matter
The Distorted Lense
It would seem to me that if any lens could direct "the focus of our vision" then why not the focus of the gravitational waves? I mean if there is a "inverse calculation" to waves, it would seem t me that such a process could point to a heavy concentration in terms of blackhole production?
As one of the fields which obey the general inverse square law, the gravity field can be put in the form shown above, showing that the acceleration of gravity, g, is an expression of the intensity of the gravity field.
As I am reading different thoughts are manifesting and one of these has to do with the "escape velocity of the photon." Why I am not sure at the moment. This used as a measure of determination of whether a blackhole exists? How did we arrive at such a point?
Albert Einstein (1879–1955)
One part of the theory of Relativity was inspired when a painter fell off a roof. Einstein found out that while the painter was falling freely, he felt weightless. This led Einstein to realize that gravity was a form of inertia, a result of the way things moved through space - and General Relativity was born.
It is important for me to recognize the collider process in context of what it is experimentally doing. For me this is demonstrating a "geometrical process" even if it is being taken down to the such "weak gravitational ranges" that I would point to what would manifest,if a tunnelling effect occurred from one location to the next.
Time travel
Plato:Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?Tunneling in Faster then Light
Warp Drives", "Hyperspace Drives", or any other term for Faster-than-light travel is at the level of speculation, with some facets edging into the realm of science. We are at the point where we know what we do know and know what we don’t, but do not know for sure if faster than light travel is possible.
The bad news is that the bulk of scientific knowledge that we have accumulated to date concludes that faster than light travel is impossible. This is an artifact of Einstein’s Special Theory of Relativity. Yes, there are some other perspectives; tachyons, wormholes, inflationary universe, spacetime warping, quantum paradoxes...ideas that are in credible scientific literature, but it is still too soon to know if such ideas are viable.
One of the issues that is evoked by any faster-than-light transport is time paradoxes: causality violations and implications of time travel. As if the faster than light issue wasn’t tough enough, it is possible to construct elaborate scenarios where faster-than-light travel results in time travel. Time travel is considered far more impossible than light travel.
It would be suspect to me that such travelling in space would allow for the manufacture of gravitational influences to be pointed in the "direction of travel" and allow such slippage away from that current position.
Gravitational Mass for a Photon
The relativistic energy expression attributes a mass to any energetic particle, and for the photon
The gravitational potential energy is then
When the photon escapes the gravity field, it will have a different frequency
Since it is reduced in frequency, this is called the gravitational red shift or the Einstein red shift.
Escape Energy for Photon
If the gravitational potential energy of the photon is exactly equal to the photon energy then
Note that this condition is independent of the frequency, and for a given mass M establishes a critical radius. Actually, Schwarzchilds's calculated gravitational radius differs from this result by a factor of 2 and is coincidently equal to the non-relativistic escape velocity expression
A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole."
For more see "Time as a measure.
By allowing new physics to emerge, what basis is being held relevant then to what is being created in the particle collisions that are indeed faster then light?
As we know from Einstein’s theory of special relativity, nothing can travel faster than c, the velocity of light in a vacuum. The speed of the light that we see generally travels with a slower velocity c/n where n is the refractive index of the medium through which we view the light (in air at sea level, n is approximately 1.00029 whereas in water n is 1.33). Highly energetic, charged particles (which are only constrained to travel slower than c) tend to radiate photons when they pass through a medium and, consequently, can suddenly find themselves in the embarrassing position of actually travelling faster than the light they produce!
The result of this can be illustrated by considering a moving particle which emits pulses of light that expand like ripples on a pond, as shown in the Figure (right). By the time the particle is at the position indicated by the purple spot, the spherical shell of light emitted when the particle was in the blue position will have expanded to the radius indicated by the open blue circle. Likewise, the light emitted when the particle was in the green position will have expanded to the radius indicated by the open green circle, and so on. Notice that these ripples overlap with each other to form an enhanced cone of light indicated by the dotted lines. This is analogous to the idea that leads to a sonic boom when planes such as Concorde travel faster than the speed of sound in air
See also information on What is Cerenkov Radiation?
Fifth Dimensional General Relativity
It was a gradual process that using Grace to help me see the earth in new ways was paramount to the inclusion principle of electromagnetism contained within the move to GR.I may be mixed up here, and I have no one to say.
"Color of gravity" assumes that you have seen the colour of gravity in relation to this slide of light. So seeing in such a way would seem relevant in the fifth dimensional perspective.
In Kaku's preface of Hyperspace, page ix, we find a innocent enough statement that helps us orientate a view that previous to all understanding, is couched in the work of Kaluza.
In para 3, he writes,
Similarily, the laws of gravity and light seem totally dissimilar. They obey different physical assumptions and different mathematics. Attempts to splice these two forces have always failed. However, if we add one more dimension, a fifth dimension, to the previous four dimensions of space and time, then equations governing light and gravity appear to merge together like two pieces of a jigsaw puzzle. Light, in fact, can be explained in the fifth dimension. In this way, we see the laws of light and gravity become simpler in five dimensions.
I would think such a thought here by Kaku would have stimulated the brains of people to see that a direct result is needed in our reality to which such thoughts I am giving would allow you to see gravity in new ways?
Lagrangian views with regards to relations between the Earth, Moon and Sun would help one to see the general outlay of gravitational influences in space. That is also part of the work I have been following to understand the spacetime fabric and how we may see this in our dealings.
No comments:
Post a Comment