Showing posts sorted by relevance for query lorentz. Sort by date Show all posts
Showing posts sorted by relevance for query lorentz. Sort by date Show all posts

Monday, February 05, 2007

Symmetry in Psychological Action


Our basic premise is that minuscule apparent violations of Lorentz and CPT invariance might be observable in nature. The idea is that the violations would arise as suppressed effects from a more fundamental theory.

We have shown in our publications that arbitrary Lorentz and CPT violations are quantitatively described by a theory called the Standard-Model Extension, which is a modification of the usual Standard Model of particle physics and Einstein's theory of gravity, General Relativity.


Symbols are important to convey what we can appreciate in "natures examples." While this image above is about clocks, it is also about "the past and the future." Which clock represents which to you?

I have been having amazing troubles with this until having looked at some of Marcia's Smilack's photography. I am not sure all my definitions are correct to hers but I have somehow seen a lot of my confusion disappear.

While reductionism was holding my mind to the compressible feature and condensible feature to the building blocks of nature, there was a much larger picture going on in discovering the "uncertainty of that micro perspective of the world" we force our minds to venture too.

For the first time, physicists appreciate the power of symmetry in their equations. When a physicist talks about “beauty and elegance” in physics, what he or she often really means is that symmetry allows one to unify a large number of diverse phenomena and concepts into a remarkably compact form. The more beautiful an equation is, the more symmetry it possesses, and the more phenomena it can explain in the shortest amount of space” Pg 761


It is not to nice when one does not include the "source of the writing involved" so I will have to go and look for where I took that quote from(I believe it is the Fabric of the Universe by Brian Greene, but I can't seem to locate the book for checking).

The idea here is to open this post entry with what was inherent in our actions "psychologically" could have had some basis in what we recognize of our relationship with nature. The relationship with the world around us. When are we most receptive to nature?

"
Golden Rectangle
I took the picture at a time of day when the tide was at exactly the right place to create this image: when the surface of the water reflected the underside of the bridge and they combined, together they produced what I named the Golden Rectangle as a nod to Pythagoras (my hero). The sensation I experienced at the time was of balancing consciousness and feeling.


By "bridging," a "whole picture materializes in reflection" in which we can "cross with" newly formed ideas. Had to have some basis in which the picture taken, may have a had a "greater meaning." How could it ever had made sense if you had not recognized what "the water to mean," and what the reflections cause us to recognize, as we learn to discover this wholeness within self?

"Striving" to bring "this perfection" to it's rightful place amongst the inquirers? What the resulting relation of student who takes the picture, will find as they delve into the world of what the unconscious "may represent" as it reflected from the reality onto the open water. The "past reflected" to what can manifest "toward" reality.

The future is then part of the "unconscious recognition" of what can be eventually be reflected, has some basis, before, "the past" can ever be solidified into reality?



It is important for you to see the source of this image of the circle within circles to understand that when you "mouse over the picture" you see how the "two pictures are used" to further my points about this interaction.

One has to follow the picture above to finally get to the source of this picture. It has been used to explain the process of distinguishing of explaining "the inner/outer" at any one time, while these processes could have transfixed us to one of it's particular domain.

So by completing "this circle," I had too, in some way, include the idea of "symmetry of psychological action," as I had come to instill this act of "the student/teacher within each of us." Had to gain independence by growing confidence in engaging the world. That is was necessary, to not be thwarted by the restrictions of, "being less then desired," or a "broken flower pot" on this road to discovery.

Finally, we also hope that this series furthers the discussion regarding the nature and function of 'the mandala'. In the spiritual traditions from which Jung borrowed the term, it is not the SYMMETRY of mandalas that is all-important, as Jung later led us to believe. It is their capacity to reveal the asymmetry that resides at the very heart of symmetry. By offering a new view about how consciousness itself is structured - in a fundamentally paradoxical fashion - and how these structurings are reflected in principles according to which the mandala is organized, we are able in this series to show how personality itself may be thought of as having an essentially 'liminocentric' design.



Symmetry Breaking



It was never my intent to confuse people by bring this "psychological action" to the forefront in relation to "science's measure of the statement," but to help people become aware of this relationship we have with reality. That you can "gain confidence within the self" to explore beyond the limitations of what science saids in terms of acceptable proofs and attempts at falsification." By setting the goals, in your explorations to discover "more about the world we live in" then just laying our heads to rest on "a medium" to take over. What does it mean to you?


The two clocks depicted in the official logo for the CPT '04 meeting are related by the parity transformation (P). The inversion of black and white represents charge conservation (C), while time reversal (T) is represented by the movement of the hands of the clock in opposite directions.

Wednesday, October 12, 2011

Seeing Underlying Structures

 There is  gap between,  "Proton Collision ->Decay to Muons and Muon Neutrinos ->Tau Neutrino ->[gap] tau lepton may travel some tens of microns before decaying back into neutrino and charged tracks." Use the case of Relativistic Muons?


 An analysis of four Fermi-detected gamma-ray bursts (GRBs) is given that sets upper limits on the energy dependence of the speed and dispersion of light across the universe. The analysis focuses on photons recorded above 1 GeV for Fermi detected GRB 080916C, GRB 090510A, GRB090902B, and GRB 090926A. Upper limits on time scales for statistically significant bunching of photon arrival times were found and cataloged. In particular, the most stringent limit was found for GRB 090510A at redshift z & 0.897 for which t < 0.00136 sec, a limit driven by three separate photon bunchings. These photons occurred among the first seven super-GeV photons recorded for GRB 090510A and contain one pair with an energy difference of E & 23.5 GeV. The next most limiting burst was GRB 090902B at a redshift of z & 1.822 for which t < 0.161, a limit driven by several groups of photons, one pair of which had an energy difference E & 1.56 GeV. Resulting limits on the differential speed of light and Lorentz invariance were found for all of these GRBs independently. The strongest limit was for GRB 090510A with c/c < 6.09 x 10−21. Given generic dispersion relations across the universe where the time delay is proportional to the photon energy to the first or second power, the most stringent limits on the dispersion strengths were k1 < 1.38 x 10−5 sec Gpc−1 GeV−1 and k2 < 3.04 x 10−7 sec Gpc−1 GeV−2 respectively. Such upper limits result in upper bounds on dispersive effects created, for example, by dark energy, dark matter or the spacetime foam of quantum gravity. Relating these dispersion constraints to loop quantum gravity
energy scales specifically results in limits of M1c2 > 7.43 x 1021 GeV and M2c2 > 7.13 x 1011 GeV respectively. See: Limiting properties of light and the universe with high energy photons from Fermi-detected Gamma Ray Bursts


The point here is that Energetic disposition of flight time and Fermi Calorimetry result point toward GRB emission and directly determination of GRB emission allocates potential of underlying structure W and the electron-neutrino fields?

Fig. 3: An electron, as it travels, may become a more complex combination of disturbances in two or more fields. It occasionally is a mixture of disturbances in the photon and electron fields; more rarely it is a disturbance in the W and the electron-neutrino fields. See: Another Speed Bump for Superluminal Neutrinos Posted on October 11, 2011 at, "Of Particular Significance"
***
What I find interesting is that Tamburini and Laveder do not stop at discussing the theoretical interpretation of the alleged superluminal motion, but put their hypothesis to the test by comparing known measurements of neutrino velocity on a graph, where the imaginary mass is computed from the momentum of neutrinos and the distance traveled in a dense medium. The data show a very linear behaviour, which may constitute an explanation of the Opera effect: See: Tamburini: Neutrinos Are Majorana Particles, Relativity Is OK


See Also:

Friday, December 18, 2009

What the "i" represents, is Natural?






A Conformal Diagram of a Minkowski Spacetime
John D. Norton

First, here is the conformal diagram of a Minkowski spacetime. This is the complete spacetime. It includes all of the infinity of space and the infinity of time through which things persist.

This diagram gives the simplest case in which we consider just one dimension of space.

Note the three types of infinities: timelike, lightlike and spacelike. They correspond to the different vanishing points in an ordinary perspective drawing.


*** 
The Quantum Theory of the Electron



Paul Dirac

Projective Geometry
When one is doing mathematical work, there are essentially two different ways of thinking about the subject: the algebraic way, and the geometric way. With the algebraic way, one is all the time writing down equations and following rules of deduction, and interpreting these equations to get more equations. With the geometric way, one is thinking in terms of pictures; pictures which one imagines in space in some way, and one just tries to get a feeling for the relationships between the quantities occurring in those pictures. Now, a good mathematician has to be a master of both ways of those ways of thinking, but even so, he will have a preference for one or the other; I don't think he can avoid it. In my own case, my own preference is especially for the geometrical way.

*** 
In mathematical physics, the gamma matrices, {γ0123}, also known as the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cℓ(1,3). It is also possible to define higher-dimensional Gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of space time acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate space-time computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-½ particles.

In Dirac representation, the four contravariant gamma matrices are
 \gamma^0 = 
\begin{pmatrix} 
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\ 
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \end{pmatrix},\quad
\gamma^1 \!=\! \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \end{pmatrix}
\gamma^2 \!=\! \begin{pmatrix}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0 \end{pmatrix},\quad
\gamma^3 \!=\! \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \end{pmatrix}.
Analogue sets of gamma matrices can be defined in any dimension and signature of the metric. For example the Pauli matrices are a set of "gamma" matrices in dimension 3 with metric of Euclidean signature (3,0).

*** 

www.mcescher.com



Can we hope to use antimatter as a source of energy? Do you feel antimatter could power vehicles in the future, or would it just be used for major power sources?

There is no possibility to use antimatter as energy "source". Unlike solar energy, coal or oil, antimatter does not occur in nature: we have to make every particle at the expense of much more energy than it can give back during annihilation.

You might imagine antimatter as a possible temporary storage medium for energy, much like you store electricity in rechargeable batteries. The process of charging the battery is reversible with relatively small loss. Still, it takes more energy to charge the battery than what you get back out of it. For antimatter the loss factors are so enormous that it will never be practical.

If we could assemble all the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.


***

Thoughts on Angel and Demons Plot




``For me, the most attractive way ... would be to capture the antihydrogen in a neutral particle trap ... The objective would be to then study the properties of a small number of [antihydrogen] atoms confined in the neutral trap for a long time."Gerald Gabrielse, 1986 Erice Lecture (shortly after first trapping of antiprotons)
"Penning Traps, Masses and Antiprotons", in Fundamental Symmetries,
edited by P. Bloch, P. Paulopoulos and R. Klapisch, p. 59 (Plenum, New York, 1987). See:Goals for ATRAP
***


Physics at this high energy scale describes the universe as it existed during the first moments of the Big Bang. These high energy scales are completely beyond the range which can be created in the particle accelerators we currently have (or will have in the foreseeable future.) Most of the physical theories that we use to understand the universe that we live in also break down at the Planck scale. However, string theory shows unique promise in being able to describe the physics of the Planck scale and the Big Bang.

Thursday, September 04, 2008

Turtles and Elephants

There is this notion that to work with different species and incorporate them, it some how makes it more natural an explanation?(guilty):) I guess I am guilty of same and more, by using geometrical progressiveness in place of the propensity for nature to be revealing itself in varying degrees. It was always there for inspection?

So anyway this clip I took from a previous post on, "Who said it?" charts the example I give currently in line with Bee's Backreaction: Turtles all the way up I did not go beyond the introduction, and assume it was not Davies talk. I was cut off at 14 meg while the whole talk is much longer. I'll have to try again tonight(08 sep 2008).

I still have yet to download Davies talk, given the constraints the work schedule limits with regard to the "intranet."

But just reading briefly Dr. Who's position and Markk suggestion that Dr. Who is confusing model with reality.

Bold and italicized were added by me.

The Coleman-Mandula theorem, named after Sidney Coleman and Jeffrey Mandula, is a no-go theorem in theoretical physics. It states that the only conserved quantities in a "realistic" theory with a mass gap, apart from the generators of the Poincaré group, must be Lorentz scalars.

In other words, every quantum field theory satisfying certain technical assumptions about its S-matrix that has non-trivial interactions can only have a symmetry Lie algebra which is always a direct product of the Poincare group and an internal group if there is a mass gap: no mixing between these two is possible. As the authors say in their introduction, "We prove a new theorem on the impossibility of combining space-time and internal symmetries in any but a trivial way."[1]


First off let me give you an example and you tell me how the idea of any bulk perspective given to graviton understanding will not have it's examples in terms of Lagrangian in space? Serve to help one graduate in terms of gravities when looking at the universe?

Are there no other mechanism that details the Coleman Mandula action other then a multiversity idea in terms of the false vacuum to the true?

I encourage such topological understanding given to a larger format when looking at WMAP of the global perspective. Incidences within the universe give way to a larger depiction of the anomalies generated in perceived examples of monopoles generated in Sean Carroll's group think.

That such concentrations in graviton densities would have an impact on our perceptions in terms of Lagrangian.

If one were to say that any manifold generated at the perception of microscopic views were indicative of a larger topological suggestion in the WMAP, would this then not account for an impression of 10 sup-500-/sup(only written this way because comment section will not allow "sup" html discription)?

Gravities had to be inclusive at all stages and manifold expressions part of this cosmological view?

Best,

Valuing Negativity by Mark Trodden

The basic point is that if one assumes that the generators of the internal symmetry group are commuting operators (and that their commutation relations define the group - i.e. that they comprise a Lie algebra), then the only possible total symmetry is a direct product of the space-time symmetries (the Poincaré group) and the internal symmetry group. This is what they meant by trivial in the abstract.

If this had been the end of the story, then bosons and fermions (and therefore force carriers and matter) would be destined to forever remain distinct. But here comes the loophole. The 1975 Haag-Lopuszanski-Sohnius theorem (after Rudolf Haag, Jan Lopuszanski, and Martin Sohnius) pointed out that if one relaxes one of the assumptions, and allows anticommuting operators as generators of the symmetry group, then there is a possible non-trivial unification of internal and space-time symmetries. Such a symmetry is called supersymmetry and, as you know, constitutes a large part of current research into particle physics.

No-go theorems are fun in physics because they formalize where the important barriers lie and provide guidance about the directions of future attacks on the problem in question. Negative results in general, although not quite as glamorous or exciting, are still great stuff. We should celebrate them. Plus, we don’t want to be like the medical community do we?


Identify the early universe in the QGP perspective needed some way in which to limit reductionism points of view and by incorporating relativity at that level, such an expression then are imparted to a more global manifold detail based on a larger progressive geometry perspective of the universe.

Universe speeding up? From the inside/out this details such a connection in my view.

Best,


This was done to verify the statements made in two comments there and to show a comment made at cosmic variance's "Lopsided Universe" were related exactly to the points I am currently making in regard to a point of view shared by Dr. Who and a consequential statement by Markk in terms of the multiverse and bubble nucleations.

Sean Carroll:But if you peer closely, you will see that the bottom one is the lopsided one — the overall contrast (representing temperature fluctuations) is a bit higher on the left than on the right, while in the untilted image at the top they are (statistically) equal. (The lower image exaggerates the claimed effect in the real universe by a factor of two, just to make it easier to see by eye.)
See The Lopsided Universe-. Basically the comments I have made in this post by Sean have remained intact although toward the end I think it was thought I might have gone to far?

Sunday, April 17, 2011

Space

Space is the boundless, three-dimensional extent in which objects and events occur and have relative position and direction.[1] Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of the boundless four-dimensional continuum known as spacetime. In mathematics one examines 'spaces' with different numbers of dimensions and with different underlying structures. The concept of space is considered to be of fundamental importance to an understanding of the physical universe although disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework.

Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, in his reflections on what the Greeks called: chora / Khora (i.e. 'space'), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e. place), or even in the later 'geometrical conception of place' as 'space qua extension' in the Discourse on Place (Qawl fi al-makan) of the 11th century Arab polymath Ibn al-Haytham (Alhazen).[2] Many of these classical philosophical questions were discussed in the Renaissance and then reformulated in the 17th century, particularly during the early development of classical mechanics. In Isaac Newton's view, space was absolute - in the sense that it existed permanently and independently of whether there were any matter in the space.[3]

Other natural philosophers, notably Gottfried Leibniz, thought instead that space was a collection of relations between objects, given by their distance and direction from one another. In the 18th century, the philosopher and theologian George Berkely attempted to refute the 'visibility of spatial depth' in his Essay Towards a New Theory of Vision. Later, the great metaphysician Immanuel Kant described space and time as elements of a systematic framework that humans use to structure their experience; he referred to 'space' in his Critique of Pure Reason as being: a subjective 'pure a priori form of intuition', hence that its existence depends on our human faculties.

In the 19th and 20th centuries mathematicians began to examine non-Euclidean geometries, in which space can be said to be curved, rather than flat. According to Albert Einstein's theory of general relativity, space around gravitational fields deviates from Euclidean space.[4] Experimental tests of general relativity have confirmed that non-Euclidean space provides a better model for the shape of space.

Contents

Philosophy of space

Leibniz and Newton

In the seventeenth century, the philosophy of space and time emerged as a central issue in epistemology and metaphysics. At its heart, Gottfried Leibniz, the German philosopher-mathematician, and Isaac Newton, the English physicist-mathematician, set out two opposing theories of what space is. Rather than being an entity that independently exists over and above other matter, Leibniz held that space is no more than the collection of spatial relations between objects in the world: "space is that which results from places taken together".[5] Unoccupied regions are those that could have objects in them, and thus spatial relations with other places. For Leibniz, then, space was an idealised abstraction from the relations between individual entities or their possible locations and therefore could not be continuous but must be discrete.[6] Space could be thought of in a similar way to the relations between family members. Although people in the family are related to one another, the relations do not exist independently of the people.[7] Leibniz argued that space could not exist independently of objects in the world because that implies a difference between two universes exactly alike except for the location of the material world in each universe. But since there would be no observational way of telling these universes apart then, according to the identity of indiscernibles, there would be no real difference between them. According to the principle of sufficient reason, any theory of space that implied that there could be these two possible universes, must therefore be wrong.[8]


Newton took space to be more than relations between material objects and based his position on observation and experimentation. For a relationist there can be no real difference between inertial motion, in which the object travels with constant velocity, and non-inertial motion, in which the velocity changes with time, since all spatial measurements are relative to other objects and their motions. But Newton argued that since non-inertial motion generates forces, it must be absolute.[9] He used the example of water in a spinning bucket to demonstrate his argument. Water in a bucket is hung from a rope and set to spin, starts with a flat surface. After a while, as the bucket continues to spin, the surface of the water becomes concave. If the bucket's spinning is stopped then the surface of the water remains concave as it continues to spin. The concave surface is therefore apparently not the result of relative motion between the bucket and the water.[10] Instead, Newton argued, it must be a result of non-inertial motion relative to space itself. For several centuries the bucket argument was decisive in showing that space must exist independently of matter.

Kant

In the eighteenth century the German philosopher Immanuel Kant developed a theory of knowledge in which knowledge about space can be both a priori and synthetic.[11] According to Kant, knowledge about space is synthetic, in that statements about space are not simply true by virtue of the meaning of the words in the statement. In his work, Kant rejected the view that space must be either a substance or relation. Instead he came to the conclusion that space and time are not discovered by humans to be objective features of the world, but are part of an unavoidable systematic framework for organizing our experiences.[12]

Non-Euclidean geometry

Spherical geometry is similar to elliptical geometry. On the surface of a sphere there are no parallel lines.
 
Euclid's Elements contained five postulates that form the basis for Euclidean geometry. One of these, the parallel postulate has been the subject of debate among mathematicians for many centuries. It states that on any plane on which there is a straight line L1 and a point P not on L1, there is only one straight line L2 on the plane that passes through the point P and is parallel to the straight line L1. Until the 19th century, few doubted the truth of the postulate; instead debate centered over whether it was necessary as an axiom, or whether it was a theory that could be derived from the other axioms.[13] Around 1830 though, the Hungarian János Bolyai and the Russian Nikolai Ivanovich Lobachevsky separately published treatises on a type of geometry that does not include the parallel postulate, called hyperbolic geometry. In this geometry, an infinite number of parallel lines pass through the point P. Consequently the sum of angles in a triangle is less than 180o and the ratio of a circle's circumference to its diameter is greater than pi. In the 1850s, Bernhard Riemann developed an equivalent theory of elliptical geometry, in which no parallel lines pass through P. In this geometry, triangles have more than 180o and circles have a ratio of circumference-to-diameter that is less than pi.
Type of geometry Number of parallels Sum of angles in a triangle Ratio of circumference to diameter of circle Measure of curvature
Hyperbolic Infinite < 180o > π < 0
Euclidean 1 180o π 0
Elliptical 0 > 180o < π > 0

Gauss and Poincaré

Although there was a prevailing Kantian consensus at the time, once non-Euclidean geometries had been formalised, some began to wonder whether or not physical space is curved. Carl Friedrich Gauss, a German mathematician, was the first to consider an empirical investigation of the geometrical structure of space. He thought of making a test of the sum of the angles of an enormous stellar triangle and there are reports he actually carried out a test, on a small scale, by triangulating mountain tops in Germany.[14]

Henri Poincaré, a French mathematician and physicist of the late 19th century introduced an important insight in which he attempted to demonstrate the futility of any attempt to discover which geometry applies to space by experiment.[15] He considered the predicament that would face scientists if they were confined to the surface of an imaginary large sphere with particular properties, known as a sphere-world. In this world, the temperature is taken to vary in such a way that all objects expand and contract in similar proportions in different places on the sphere. With a suitable falloff in temperature, if the scientists try to use measuring rods to determine the sum of the angles in a triangle, they can be deceived into thinking that they inhabit a plane, rather than a spherical surface.[16] In fact, the scientists cannot in principle determine whether they inhabit a plane or sphere and, Poincaré argued, the same is true for the debate over whether real space is Euclidean or not. For him, which geometry was used to describe space, was a matter of convention.[17] Since Euclidean geometry is simpler than non-Euclidean geometry, he assumed the former would always be used to describe the 'true' geometry of the world.[18]

Einstein

In 1905, Albert Einstein published a paper on a special theory of relativity, in which he proposed that space and time be combined into a single construct known as spacetime. In this theory, the speed of light in a vacuum is the same for all observers—which has the result that two events that appear simultaneous to one particular observer will not be simultaneous to another observer if the observers are moving with respect to one another. Moreover, an observer will measure a moving clock to tick more slowly than one that is stationary with respect to them; and objects are measured to be shortened in the direction that they are moving with respect to the observer.

Over the following ten years Einstein worked on a general theory of relativity, which is a theory of how gravity interacts with spacetime. Instead of viewing gravity as a force field acting in spacetime, Einstein suggested that it modifies the geometric structure of spacetime itself.[19] According to the general theory, time goes more slowly at places with lower gravitational potentials and rays of light bend in the presence of a gravitational field. Scientists have studied the behaviour of binary pulsars, confirming the predictions of Einstein's theories and Non-Euclidean geometry is usually used to describe spacetime.

Mathematics

In modern mathematics spaces are defined as sets with some added structure. They are frequently described as different types of manifolds, which are spaces that locally approximate to Euclidean space, and where the properties are defined largely on local connectedness of points that lie on the manifold. There are however, many diverse mathematical objects that are called spaces. For example, vector spaces such as function spaces may have infinite numbers of independent dimensions and a notion of distance very different to Euclidean space, and topological spaces replace the concept of distance with a more abstract idea of nearness.

Physics

Classical mechanics

Classical mechanics
History of classical mechanics · Timeline of classical mechanics
[hide]Fundamental concepts
Space · Time · Velocity · Speed · Mass · Acceleration · Gravity · Force · Impulse · Torque / Moment / Couple · Momentum · Angular momentum · Inertia · Moment of inertia · Reference frame · Energy · Kinetic energy · Potential energy · Mechanical work · Virtual work · D'Alembert's principle
v · d · e
Space is one of the few fundamental quantities in physics, meaning that it cannot be defined via other quantities because nothing more fundamental is known at the present. On the other hand, it can be related to other fundamental quantities. Thus, similar to other fundamental quantities (like time and mass), space can be explored via measurement and experiment.

Astronomy

Astronomy is the science involved with the observation, explanation and measuring of objects in outer space.

Relativity

Before Einstein's work on relativistic physics, time and space were viewed as independent dimensions. Einstein's discoveries showed that due to relativity of motion our space and time can be mathematically combined into one object — spacetime. It turns out that distances in space or in time separately are not invariant with respect to Lorentz coordinate transformations, but distances in Minkowski space-time along space-time intervals are—which justifies the name.
In addition, time and space dimensions should not be viewed as exactly equivalent in Minkowski space-time. One can freely move in space but not in time. Thus, time and space coordinates are treated differently both in special relativity (where time is sometimes considered an imaginary coordinate) and in general relativity (where different signs are assigned to time and space components of spacetime metric).

Furthermore, in Einstein's general theory of relativity, it is postulated that space-time is geometrically distorted- curved -near to gravitationally significant masses.[20]

Experiments are ongoing to attempt to directly measure gravitational waves. This is essentially solutions to the equations of general relativity, which describe moving ripples of spacetime. Indirect evidence for this has been found in the motions of the Hulse-Taylor binary system.

Cosmology

Relativity theory leads to the cosmological question of what shape the universe is, and where space came from. It appears that space was created in the Big Bang, 13.7 billion years ago and has been expanding ever since. The overall shape of space is not known, but space is known to be expanding very rapidly due to the Cosmic Inflation.

Spatial measurement

The measurement of physical space has long been important. Although earlier societies had developed measuring systems, the International System of Units, (SI), is now the most common system of units used in the measuring of space, and is almost universally used.

Currently, the standard space interval, called a standard meter or simply meter, is defined as the distance traveled by light in a vacuum during a time interval of exactly 1/299,792,458 of a second. This definition coupled with present definition of the second is based on the special theory of relativity in which the speed of light plays the role of a fundamental constant of nature.

Geographical space

Geography is the branch of science concerned with identifying and describing the Earth, utilizing spatial awareness to try and understand why things exist in specific locations. Cartography is the mapping of spaces to allow better navigation, for visualization purposes and to act as a locational device. Geostatistics apply statistical concepts to collected spatial data to create an estimate for unobserved phenomena.

Geographical space is often considered as land, and can have a relation to ownership usage (in which space is seen as property or territory). While some cultures assert the rights of the individual in terms of ownership, other cultures will identify with a communal approach to land ownership, while still other cultures such as Australian Aboriginals, rather than asserting ownership rights to land, invert the relationship and consider that they are in fact owned by the land. Spatial planning is a method of regulating the use of space at land-level, with decisions made at regional, national and international levels. Space can also impact on human and cultural behavior, being an important factor in architecture, where it will impact on the design of buildings and structures, and on farming.

Ownership of space is not restricted to land. Ownership of airspace and of waters is decided internationally. Other forms of ownership have been recently asserted to other spaces — for example to the radio bands of the electromagnetic spectrum or to cyberspace.

Public space is a term used to define areas of land as collectively owned by the community, and managed in their name by delegated bodies; such spaces are open to all. While private property is the land culturally owned by an individual or company, for their own use and pleasure.

Abstract space is a term used in geography to refer to a hypothetical space characterized by complete homogeneity. When modeling activity or behavior, it is a conceptual tool used to limit extraneous variables such as terrain.

In psychology

Psychologists first began to study the way space is perceived in the middle of the 19th century. Those now concerned with such studies regard it as a distinct branch of psychology. Psychologists analyzing the perception of space are concerned with how recognition of an object's physical appearance or its interactions are perceived.

Other, more specialized topics studied include amodal perception and object permanence. The perception of surroundings is important due to its necessary relevance to survival, especially with regards to hunting and self preservation as well as simply one's idea of personal space.

Several space-related phobias have been identified, including agoraphobia (the fear of open spaces), astrophobia (the fear of celestial space) and claustrophobia (the fear of enclosed spaces).

See also

References

  1. ^ Britannica Online Encyclopedia: Space
  2. ^ Refer to Plato's Timaeus in the Loeb Classical Library, Harvard University, and to his reflections on: Chora / Khora. See also Aristotle's Physics, Book IV, Chapter 5, on the definition of topos. Concerning Ibn al-Haytham's 11th century conception of 'geometrical place' as 'spatial extension', which is akin to Descartes' and Leibniz's 17th century notions of extensio and analysis situs, and his own mathematical refutation of Aristotle's definition of topos in natural philosophy, refer to: Nader El-Bizri, 'In Defence of the Sovereignty of Philosophy: al-Baghdadi's Critique of Ibn al-Haytham's Geometrisation of Place', Arabic Sciences and Philosophy: A Historical Journal (Cambridge University Press), Vol.17 (2007), pp. 57-80.
  3. ^ French and Ebison, Classical Mechanics, p. 1
  4. ^ Carnap, R. An introduction to the Philosophy of Science
  5. ^ Leibniz, Fifth letter to Samuel Clarke
  6. ^ Vailati, E, Leibniz & Clarke: A Study of Their Correspondence p. 115
  7. ^ Sklar, L, Philosophy of Physics, p. 20
  8. ^ Sklar, L, Philosophy of Physics, p. 21
  9. ^ Sklar, L, Philosophy of Physics, p. 22
  10. ^ Newton's bucket
  11. ^ Carnap, R, An introduction to the philosophy of science, p. 177-178
  12. ^ Lucas, John Randolph. Space, Time and Causality. p. 149. ISBN 0198750579.
  13. ^ Carnap, R, An introduction to the philosophy of science, p. 126
  14. ^ Carnap, R, An introduction to the philosophy of science, p. 134-136
  15. ^ Jammer, M, Concepts of Space, p. 165
  16. ^ A medium with a variable index of refraction could also be used to bend the path of light and again deceive the scientists if they attempt to use light to map out their geometry
  17. ^ Carnap, R, An introduction to the philosophy of science, p. 148
  18. ^ Sklar, L, Philosophy of Physics, p. 57
  19. ^ Sklar, L, Philsosophy of Physics, p. 43
  20. ^ chapters 8 and 9- John A. Wheeler "A Journey Into Gravity and Spacetime" Scientific American ISBN 0-7167-6034-7

Sunday, July 11, 2010

A Way From Perfection- Symmetry

Noether's Theorem

"For every continuous symmetry of the law of physics, there must exist a conservation law.

For every conservation law, there must exist a continuous symmetry"

Conservation laws and symmetry

The symmetry properties of a physical system are intimately related to the conservation laws characterizing that system. Noether's theorem gives a precise description of this relation. The theorem states that each continuous symmetry of a physical system implies that some physical property of that system is conserved. Conversely, each conserved quantity has a corresponding symmetry. For example, the isometry of space gives rise to conservation of (linear) momentum, and isometry of time gives rise to conservation of energy.
The following table summarizes some fundamental symmetries and the associated conserved quantity.

Class Invariance Conserved quantity
Proper orthochronous
Lorentz symmetry
translation in time
  (homogeneity)
energy

translation in space
  (homogeneity)
linear momentum

rotation in space
  (isotropy)
angular momentum
Discrete symmetry P, coordinate inversion spatial parity

C, charge conjugation charge parity

T, time reversal time parity

CPT product of parities
Internal symmetry (independent of
spacetime coordinates)
U(1) gauge transformation electric charge

U(1) gauge transformation lepton generation number

U(1) gauge transformation hypercharge

U(1)Y gauge transformation weak hypercharge

U(2) [U(1)xSU(2)] electroweak force

SU(2) gauge transformation isospin

SU(2)L gauge transformation weak isospin

PxSU(2) G-parity

SU(3) "winding number" baryon number

SU(3) gauge transformation quark color

SU(3) (approximate) quark flavor

S((U2)xU(3))
[ U(1)xSU(2)xSU(3)]
Standard Model

 

Conservation law

From Wikipedia, the free encyclopedia

In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves.

One particularly important physical result concerning conservation laws is Noether's Theorem, which states that there is a one-to-one correspondence between conservation laws and differentiable symmetries of physical systems. For example, the conservation of energy follows from the time-invariance of physical systems, and the fact that physical systems behave the same regardless of how they are oriented in space gives rise to the conservation of angular momentum.

A partial listing of conservation laws that are said to be exact laws, or more precisely have never been shown to be violated:
There are also approximate conservation laws. These are approximately true in particular situations, such as low speeds, short time scales, or certain interactions.

See also

References

  • Victor J. Stenger, 2000. Timeless Reality: Symmetry, Simplicity, and Multiple Universes. Buffalo NY: Prometheus Books. Chpt. 12 is a gentle introduction to symmetry, invariance, and conservation laws.

External links