Wednesday, June 15, 2016

Further on Base Reality

Just trying to see the context of possibilities under a paradigmatic viewing of a simulation of Space and Time.

3. Wheeler. His phrase “It from Bit” implies that at a deep level, everything is information.

“Physicists have now returned to the idea that the three-dimensional world that surrounds us could be a three- dimensional slice of a higher dimensional world.” (L. Randall, 2005) p52

If you probe the black hole with more energy, it just expands its horizon to reveal no more, so what occurs below the Planck length is unknown.
There is a Big Rip versus Big Bang as to the beginning, and at a fundamental level the question that such a base reality had to emerge from a quantum reality.

Quantum Realism: Every virtual reality boots up with a first event that also begins its space and time. In this view, the Big Bang was when our physical universe booted up, including its space-time operating system. Quantum realism suggests that the big bang was really the big rip.
See number 10
***


Its not really a God of the gaps but a limitation on what we can know, so quantum realism sets in as to what the base reality arises from. Yet, information, is being released from the black hole.

Such visualization of what is happening between a Q <-> Q measure is a visualization of change of energy(pulling apart)as the idea of distance requiring greater energies. Reduction-ism had run its limits in the black hole, so what happens inside it looked at from the boundary.

Theoretical excursions from standard views do represent paradigmatic changes regarding cognitive function, as a slip between two changes in our thought functions(the vase) and Kuhn is worth repeating.

But more then that, regardless of these new views, things already existed in place for me governing sources that were attained in my own explorations of consciousness, so these in the view of this paradigmatic change, have new words covering what existed as experience before this simulation hypothesis arose.....as an access too, what is believed to be quantum realism, as an informational source. You show two medium's using some of the changes in views. This is a method I am using as well.

So that "one thing" is quite wide and pervasive in my opinion as to all information existing...much like...Jung's collective unconscious.....which settle's through the tip of the pyramid as a inverse action of what is emergence, and as, what becomes the base reality. A schematic transference of the idea settling into the nature as a base of the pyramid. It would seem correlative toward Plato point up to that one thing. Quantum realism? How ideas filter down into the base reality.

So it really is an interactive exchange, as an inductive/deductive approach toward reality. This is part of my discovery regarding the geometrical underpinnings I mentioned. This development of thought is being seen as I learn of what is going on in my views of science today.

So this has become part of my work to understand how mathematics being developed along with quantum theory is being geometrically realized, as an excursion traveling deep into consciousness that I explored regarding mandala interpretations of experiences attained in lucid dreaming. Layers of interpretation.

Long before understanding and learning of Euclid, I was drawing images of point line plane, and images developed further from this.

It was interesting to see the idea of illusion set in as what was once seen and what is true as a picture present as part of the video demonstration in a follow up. This somehow fits with the idea of quantum cognition as it is seen at these subtle shifts of Paradigmatic change in my view.

Such acceptance proliferates to a new perspective and acceptance of the world seen as the simulation hypothesis. This to me would explain part of one's acceptance of the hypothesis since 2009.

***

See Also:



  • Base Reality
  • Wednesday, June 08, 2016

    Evolved Laser Interferometer Space Antenna

    View of amplified effects of a + polarized gravitational wave (stylized) on eLISA laser beams / arms paths.
    Detector noise curves for LISA and eLISA as a function of frequency. They lie in between the bands for ground-based detectors like Advanced LIGO (aLIGO) and pulsar timing arrays such as the European Pulsar Timing Array (EPTA). The characteristic strain of potential astrophysical sources are also shown. To be detectable the characteristic strain of a signal must be above the noise curve.[27]

    Simplified operation of a gravitational wave observatory
    Figure 1: A beamsplitter (green line) splits coherent light (from the white box) into two beams which reflect off the mirrors (cyan oblongs); only one outgoing and reflected beam in each arm is shown, and separated for clarity. The reflected beams recombine and an interference pattern is detected (purple circle).
    Figure 2: A gravitational wave passing over the left arm (yellow) changes its length and thus the interference pattern.
    ***
    Like every modern gravitational wave observatory, eLISA is based on laser interferometry technique. Its three satellites form a giant Michelson interferometer in which two "slave" satellites play the role of reflectors and one "master" satellite the one of source and observer. While a gravitational wave is passing through the interferometer, lengths of the two eLISA arms are varying due to space-time distortions resulting from the wave. Practically, it measures a relative phase shift between one local laser and one distant laser by light interference. Comparison between the observed laser beam frequency (in return beam) and the local laser beam frequency (sent beam) encodes the wave parameters. See: Evolved Laser Interferometer Space Antenna

    See Also:

    Base Reality?



    Elon Musk, "There’s a one in billions chance we’re in base reality" Written by Jason Koebler, Motherboard.
    The strongest argument for us being in a simulation, probably being in a simulation is the following: 40 years ago, we had pong, two rectangles and a dot,” Musk said. “That is what games were. Now 40 years later we have photorealistic 3D simulations with millions of people playing simultaneously and it’s getting better every year. And soon we’ll have virtual reality, augmented reality, if you assume any rate of improvement at all, the games will become indistinguishable from reality.

    Progression can stop in this base reality.....and science goes no further due to a calamity that wipes out the human race?

    A thought that stuck out in my mind.

    As I went through comparative labels,  some things that came up were regarding quantum gravity, or the physics of organic chemistry. How would a simulation hypothesis explain these things.

    Click the image to open in full size.
    This symbol was used to demonstrate in a global sense that everything is derived from bits. Taken from a speech given by John Archibald Wheeler in 1999.  Also from, J. A. Wheeler: Journey into Gravity and Spacetime (Scientific American Library, Freeman, New York, 1990),  pg. 220


     Abstraction lives in the land of the simulations as information for consciousness? It only becomes real,  physically, as a matter orientated state of expression?

     But in the same breathe,

        To my mind there must be, at the bottom of it all,
        not an equation, but an utterly simple idea.
        And to me that idea, when we finally discover it,
        will be so compelling, so inevitable,
        that we will say to one another,
        “Oh, how beautiful !
        How could it have been otherwise?” From a personal notebook of Wheeler circa 1991

    An idea then.


    It was designed by the RobotCub Consortium, of several European universities and is now supported by other projects such as ITALK.[1] The robot is open-source, with the hardware design, software and documentation all released under the GPL license. The name is a partial acronym, cub standing for Cognitive Universal Body.[2] Initial funding for the project was 8.5 million from Unit E5 – Cognitive Systems and Robotics – of the European Commission's Seventh Framework Programme, and this ran for six years from 1 September 2004 until 1 September 2010.[2]

    The motivation behind the strongly humanoid design is the embodied cognition hypothesis, that human-like manipulation plays a vital role in the development of human cognition. A baby learns many cognitive skills by interacting with its environment and other humans using its limbs and senses, and consequently its internal model of the world is largely determined by the form of the human body. The robot was designed to test this hypothesis by allowing cognitive learning scenarios to be acted out by an accurate reproduction of the perceptual system and articulation of a small child so that it could interact with the world in the same way that such a child does.[3]

    ***

    See Also:

     

    Wednesday, May 25, 2016

    Monday, May 09, 2016

    Information and Consciousness

    As I look deeper into ( Tegmark's ideas I am wondering if such affective states as emotion do describe the fluidity of feeling as a discription of all emotive states of being. While consciousness is present in such a state such a fluid system can signal other responses quite readily as a messenging system within the body. We understand well how consciousness can be moved according to such affective states.

     So to then, think of the states of abstraction that mind is given too, as a certain airiness of thought, that the brain as a consciousness system and matter defined, does not sit solely in the matter but seeks thoughts of consciousness as being in quite another state?

     Again too, I examine and wonder about judgement defined as a "matter define process" as decision making. You see these examples being defined as states of consciousness, and relevant examples of information bodily expressed, while conscious shares these facets of ideas formulated as expression from such a higher perceptive place, to reality all around?

    Regarding Determinism

     You can't argue with what's staring you in the face. It is like saying there is nothing. Nothing would never have anything to offer of itself, but it is not determined that way. Nothing like determinism is lead too, by circumstance/contextuality? By our discription of what it is?

    The reality just is? The very situation in the now is connected to what? A past, or a possible, future ?

     Now, if it is subjective, how is such a thing measured in Order for change to become possible, if possible at all? Well thats the thing, destiny and change is possible, even through a subjective understanding?

     While these are functioning facets of consciousness in expression, the subtitled examination is reactions in the bodily function related to these varying perspectives regarding those aspects of consciousness expressed. These become, defined in judgement, in measure. Quickly the materialist has been identified, but not the degrees with which consciousness has been expressed? Recognizing this aspect of layering that is realized in consciousness, reveals a deeper realization of the reality according to states of consciousness? What then is reductionism doing here to say that the final result is materialism , as judgement and measure? Subtle aspects and recognition of consciousness in this way helps to point out what is at work in the world of determinism that is believed to be hidden?

    Sunday, April 24, 2016

    Paradigmatic Change as a Quantum Process

    Kuhn likened the change in the phenomenal world to the Gestalt-switch that occurs when one sees the duck-rabbit diagram first as (representing) a duck then as (representing) a rabbit, although he himself acknowledged that he was not sure whether the Gestalt case was just an analogy or whether it illustrated some more general truth about the way the mind works that encompasses the scientific case too. 4.2 Perception, Observational Incommensurability, and World-Change

    Does it seem somewhat clearer as we go through perception changes in life we see information and how this information becomes incorporated into our lives, as experience?

    Abstract:

    Processes undergoing quantum mechanics, exhibit quantum interference effects.In this case quantum probabilities result to be different from classical probabilities because they contain an additional main point that in fact is called the quantum interference term. We use ambiguous figures to analyse if during perception cognition of human subjects we have violation of the classical probability field and quantum interference. The experiments, conducted on a group of 256 subjects, evidence that we have such quantum effect. Therefore, mental states, during perception cognition of ambiguous figures, follow quantum mechanics.pg 2 - Mental states follow quantum mechanics during perception and cognition of ambiguous figures(PDF)

    Friday, April 01, 2016

    Sonifying the Cern : p )



    Uploaded on Nov 6, 2010

    ***

    By analyzing data from collisions in the LHC experiments then using music to translate what they see, scientists have been able to make out faint patterns that sound like well-known tunes. (Image: Daniel Dominguez/ CERN)  



    See: Sonified Higgs data show a surprising result

    Ya, so it was a good laugh for April 1.

    Sunday, February 21, 2016

    The Sound of Two Black Holes Colliding


    Audio Credit: Caltech/MIT/LIGO Lab

     As the black holes spiral closer and closer in together, the frequency of the gravitational waves increases. Scientists call these sounds "chirps," because some events that generate gravitation waves would sound like a bird's chirp. See: The Sound of Two Black Holes Colliding

    This is an Audio Animation above.

    ***
    The upcoming network of Earth-based detectors, comprising Advanced Virgo, KAGRA in Japan, and possibly a third LIGO detector in India, will help scientists determine the locations of sources in the sky. This would tell us where to aim “traditional” telescopes that collect electromagnetic radiation or neutrinos. Combining observational tools in this way would be the basis for a new research field, sometimes referred to as “multimessenger astronomy” [7]. Soon we will also collect the first results from LISA Pathfinder, a spacecraft experiment serving as a testbed for eLISA, a space-based interferometer. eLISA will enable us to peer deeper into the cosmos than ground-based detectors, allowing studies of the formation of more massive black holes and investigations of the strong-field behavior of gravity at cosmological distances [8].See: Viewpoint: The First Sounds of Merging Black Holes
    ***

    See Also:

    Saturday, February 20, 2016

    Sunyaev–Zel'dovich effect

    The Sunyaev–Zel'dovich effect (often abbreviated as the SZ effect) is the result of high energy electrons distorting the cosmic microwave background radiation (CMB) through inverse Compton scattering, in which the low energy CMB photons receive an average energy boost during collision with the high energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the density perturbations of the universe. Using the Sunyaev–Zel'dovich effect, dense clusters of galaxies have been observed.

    Contents

    Introduction


    The Sunyaev–Zel'dovich effect can be divided into:
    • thermal effects, where the CMB photons interact with electrons that have high energies due to their temperature
    • kinematic effects, a second-order effect where the CMB photons interact with electrons that have high energies due to their bulk motion (also called the Ostriker–Vishniac effect, after Jeremiah P. Ostriker and Ethan Vishniac.[1])
    • polarization
    Rashid Sunyaev and Yakov Zel'dovich predicted the effect, and conducted research in 1969, 1972, and 1980. The Sunyaev–Zel'dovich effect is of major astrophysical and cosmological interest. It can help determine the value of the Hubble constant. To distinguish the SZ effect due to galaxy clusters from ordinary density perturbations, both the spectral dependence and the spatial dependence of fluctuations in the cosmic microwave background are used. Analysis of CMB data at higher angular resolution (high l values) requires taking into account the Sunyaev–Zel'dovich effect.

    First detected by Mark Birkinshaw at the University of Bristol

    Current research is focused on modelling how the effect is generated by the intracluster plasma in galaxy clusters, and on using the effect to estimate the Hubble constant and to separate different components in the angular average statistics of fluctuations in the background. Hydrodynamic structure formation simulations are being studied to gain data on thermal and kinetic effects in the theory.[2] Observations are difficult due to the small amplitude of the effect and to confusion with experimental error and other sources of CMB temperature fluctuations. However, since the Sunyaev–Zel'dovich effect is a scattering effect, its magnitude is independent of redshift. This is very important: it means that clusters at high redshift can be detected just as easily as those at low redshift. Another factor which facilitates high-redshift cluster detection is the angular scale versus redshift relation: it changes little between redshifts of 0.3 and 2, meaning that clusters between these redshifts have similar sizes on the sky. The use of surveys of clusters detected by their Sunyaev–Zel'dovich effect for the determination of cosmological parameters has been demonstrated by Barbosa et al. (1996). This might help in understanding the dynamics of dark energy in forthcoming surveys (SPT, ACT, Planck).

     

    Timeline of observations

     

    See also

     

    References


  • Ostriker, Jeremiah P. & Vishniac, Ethan T. (1986). "Effect of gravitational lenses on the microwave background, and 1146+111B,C". Nature 322 (6082): 804. Bibcode:1986Natur.322..804O. doi:10.1038/322804a0.
  • Cunnama D., Faltenbacher F.; Passmoor S., Cress C.; Cress, C.; Passmoor, S. (2009). "The velocity-shape alignment of clusters and the kinetic Sunyaev-Zeldovich effect". MNRAS Letters 397 (1): L41–L45. arXiv:0904.4765. Bibcode:2009MNRAS.397L..41C. doi:10.1111/j.1745-3933.2009.00680.x.
  • Hand, Nick; Addison, Graeme E.; Aubourg, Eric; Battaglia, Nick; Battistelli, Elia S.; Bizyaev, Dmitry; Bond, J. Richard; Brewington, Howard; Brinkmann, Jon; Brown, Benjamin R.; Das, Sudeep; Dawson, Kyle S.; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Eisenstein, Daniel J.; Fowler, Joseph W.; Gralla, Megan B.; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Kosowsky, Arthur; Lin, Yen-Ting; Malanushenko, Elena; et al. (2012). "Detection of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect". Physical Review Letters 109 (4): 041101. arXiv:1203.4219. Bibcode:2012PhRvL.109d1101H. doi:10.1103/PhysRevLett.109.041101. PMID 23006072.
  • Mroczkowski, Tony; Dicker, Simon; Sayers, Jack; Reese, Erik D.; Mason, Brian; Czakon, Nicole; Romero, Charles; Young, Alexander; Devlin, Mark; Golwala, Sunil; Korngut, Phillip; Sarazin, Craig; Bock, James; Koch, Patrick M.; Lin, Kai-Yang; Molnar, Sandor M.; Pierpaoli, Elena; Umetsu, Keiichi; Zemcov, Michael (2012). "A Multi-wavelength Study of the Sunyaev-Zel'dovich Effect in the Triple-merger Cluster MACS J0717.5+3745 with MUSTANG and Bolocam". Astrophysical Journal 761: 47. arXiv:1205.0052. Bibcode:2012ApJ...761...47M. doi:10.1088/0004-637X/761/1/47 (inactive 2015-01-09).

  • Sayers, Jack; Mroczkowski, T.; Zemcov, M.; Korngut, P. M.; Bock, J.; Bulbul, E.; Czakon, N. G.; Egami, E.; Golwala, S. R.; Koch, P. M.; Lin, K.-Y.; Mantz, A.; Molnar, S. M.; Moustakas, L.; Pierpaoli, E.; Rawle, T. D.; Reese, E. D.; Rex, M.; Shitanishi, J. A.; Siegel, S.; Umetsu, K. (2013). "A Measurement of the Kinetic Sunyaev-Zel'dovich Signal Toward MACS J0717.5+3745". Astrophysical Journal 778: 52. arXiv:1312.3680. Bibcode:2013ApJ...778...52S. doi:10.1088/0004-637X/778/1/52.

  • Further reading

    External links