The Hyper-Kamiokande project aims to address the mysteries of the origin and evolution of the Universe's matter and to confront theories of elementary particle unification. To realize these goals the project will combine a high intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC) with a new detector based upon precision neutrino experimental techniques developed in Japan. The Hyper-Kamiokande project will be about 25 times larger than Super-Kamiokande, the research facility that was first to discover evidence for neutrino mass in 1998. On this occasion, a research proto-collaboration will be formed to advance the Hyper-Kamiokande project internationally and a symposium will be held to commemorate and promote the event. In addition, a signing ceremony marking an agreement for the promotion of the project between the University of Tokyo Institute for Cosmic Ray Research (ICRR) and the High Energy Accelerator Research Organization (KEK) Institute of Particle and Nuclear Studies will take place during the symposium. See: Hyper-Kamiokande
Friday, February 06, 2015
Inaugural Symposium of the Hyper-Kamiokande Proto-Collaboration
Thursday, February 05, 2015
Superfluidity and the Roton
See: Cesium atoms shaken, not stirred, to create elusive excitation in superfluid
We present experimental evidence showing that an interacting Bose condensate in a shaken optical lattice develops a roton-maxon excitation spectrum, a feature normally associated with superfluid helium. The roton-maxon feature originates from the double-well dispersion in the shaken lattice, and can be controlled by both the atomic interaction and the lattice modulation amplitude. We determine the excitation spectrum using Bragg spectroscopy and measure the critical velocity by dragging a weak speckle potential through the condensate—both techniques are based on a digital micromirror device. Our dispersion measurements are in good agreement with a modified Bogoliubov model. DOI: http://dx.doi.org/10.1103/PhysRevLett.114.055301
Friday, January 23, 2015
After Relativism
Watch more videos on iai.tv
See Also:
***
"...underwriting the form languages of ever more domains of mathematics is a set of deep patterns which not only offer access to a kind of ideality that Plato claimed to see the universe as created with in the Timaeus; more than this, the realm of Platonic forms is itself subsumed in this new set of design elements-- and their most general instances are not the regular solids, but crystallographic reflection groups. You know, those things the non-professionals call . . . kaleidoscopes! * (In the next exciting episode, we'll see how Derrida claims mathematics is the key to freeing us from 'logocentrism'-- then ask him why, then, he jettisoned the deepest structures of mathematical patterning just to make his name...)
* H. S. M. Coxeter, Regular Polytopes (New York: Dover, 1973) is the great classic text by a great creative force in this beautiful area of geometry (A polytope is an n-dimensional analog of a polygon or polyhedron. Chapter V of this book is entitled 'The Kaleidoscope'....)"
***
See Also:
Thursday, January 22, 2015
Quantum Chromodynamics
Source - http://serious-science.org/videos/1060
Nobel Prize laureate David Gross on Rutherford experiments, asymptotic freedom, and the origin of the particle masses
Posted by
PlatoHagel
at
10:47:00 PM
Wednesday, January 21, 2015
The Dark Matter Hunt
Dark matter, the substance making up 85 percent of all the mass in the universe, is invisible. The goal of ADMX is to detect it by turning it into photons, particles of light. Dark matter was forged in the early universe, under conditions of extreme heat. ADMX, on the other hand, operates in extreme cold. Dark matter comprises most of the mass of a galaxy. To find it, ADMX will use sophisticated devices microscopic in size.
Scientists on ADMX—short for the Axion Dark Matter eXperiment—are searching for hypothetical particles called axions. The axion is a dark matter candidate that is also a bit of a dark horse, even as this esoteric branch of physics goes. See: Dark horse of the dark matter hunt
http://www.phys.washington.edu/groups/admx/experiment.html
Monday, January 12, 2015
Rationalism vs Empiricism
The dispute between rationalism and empiricism concerns the extent to which we are dependent upon sense experience in our effort to gain knowledge. Rationalists claim that there are significant ways in which our concepts and knowledge are gained independently of sense experience. Empiricists claim that sense experience is the ultimate source of all our concepts and knowledge.
Rationalists generally develop their view in two ways. First, they argue that there are cases where the content of our concepts or knowledge outstrips the information that sense experience can provide. Second, they construct accounts of how reason in some form or other provides that additional information about the world. Empiricists present complementary lines of thought. First, they develop accounts of how experience provides the information that rationalists cite, insofar as we have it in the first place. (Empiricists will at times opt for skepticism as an alternative to rationalism: if experience cannot provide the concepts or knowledge the rationalists cite, then we don't have them.) Second, empiricists attack the rationalists' accounts of how reason is a source of concepts or knowledge. SEE: Markie, Peter, "Rationalism vs. Empiricism http://plato.stanford.edu/entries/rationalism-empiricism/", The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), Edward N. Zalta (ed.),
Long before I had come to understand this nature of rationalism there were already signs that such a journey was already being awakened. This was an understanding for me as to the nature of what could be gained from the ability to visualize beyond empirical nature of our journey into the sensible realm.
I guess in a such an awakening, as to what we know, there is the realization that what comes after helps to make that sense. So in a way one might like to see how rationalism together with Empiricism actually works. It is not in the sense that I might define one group of historical thinkers to contrast each other to say that one should excel over another, but to define how such a rationally sound person moves toward empiricism to understand the reality we created by experimentation and repeatability that empiricism enshrouds.
So this awakening while slow to materialize, comes from understanding something about the logic of the world and the definitions and architecture of that logical approach. To me in this day and age it has lead to some theory about which computational view could hold the idea about how we might see this reality. I am reticence to view this as a form of that reality. It is for what holds me back is a self evident moment using deducted features of our reasoning, which could move us to that moment of clarity.
The Empiricism Thesis: We have no source of knowledge in S or for the concepts we use in S other than sense experience Empircism -
Empirical fact would not be the basis of reality for Nick Bostrum's simulation argument for instance. I hope to explain why.
The basis of this association(Rationalist, or, a Empiricist) is whether one gains by a deductive method, or, an inductive method. A sense experience tells us, science as we know it, is inductive. We must garner repeatable experiments to verify reality, a rationalist, by logic and reason of theory alone. Verification, comes afterward. This for a rationalist is a deductive something which can be true, can be "innate" before we accept the inductive method means, that is it can be rationally ascertained. It is only after ward that such a process could be said to be true or false.
If the late character of our sources may incite us to doubt the authenticity of this tradition, there remains that, in its spirit, it is in no way out of character, as can be seen by reading or rereading what Plato says about the sciences fit for the formation of philosophers in book VII of the Republic, and especially about geometry at Republic, VII, 526c8-527c11. We should only keep in mind that, for Plato, geometry, as well as all other mathematical sciences, is not an end in itself, but only a prerequisite meant to test and develop the power of abstraction in the student, that is, his ability to go beyond the level of sensible experience which keeps us within the "visible" realm, that of the material world, all the way to the pure intelligible. And geometry, as can be seen through the experiment with the slave boy in the Meno (Meno, 80d1-86d2), can also make us discover the existence of truths (that of a theorem of geometry such as, in the case of the Meno, the one about doubling a square) that may be said to be "transcendant" in that they don't depend upon what we may think about them, but have to be accepted by any reasonable being, which should lead us into wondering whether such transcendant truths might not exist as well in other areas, such as ethics and matters relating to men's ultimate happiness, whether we may be able to "demonstrate" them or not.See: Frequently Asked Questions about Plato by Bernard SUZANNEWhen you examine deeply the very nature of your journey, then, you come to realize what is hidden underneath "experience." So while being an empiricist, it is necessary to know that such a joining with the rationalist correlates with the reasoned only after the mentioned experience. These are "corollary experiences," which serve to identify that which had been identified long before the sensible world had been made known.
|
Empiricism then is to validate as a corollary that which had been cognate(maybe poor choice of word here but instead should use cognition). This does not mean you stop the process, but to extend the visionary possibility of that which can be cognitive....peering into the very nature of reality. Becomes the " we should build the notion of locality on the operationally clear 'no-signalling' condition."
Here the question of entanglement raises it's head to ask what is really being trasmitted as the corrallary of information, as a direct physical connection in a computational system. In a quantum gravity scheme what is exchanged as a spin 2 graviton we might examine in the corollary of this no signalling condition but as a direct understanding of gravitational signalling.?
Such an examination reveals the Innate process with which we may already know "some thing," is awakened by moving into the world of science. While we consider such computational reality in context of a ontological question, then, such a journey may be represented as the geometry of the being which reveals a deeper question about the make-up of that reality.
Affective Field Theory of Emotion regarding sensory development may aid in the journey for understanding the place with which "the idea/form in expression arises," and that which is reasoned, beyond the related abstractions of "such a beginning," by becoming the ideal, in the empiricist world.
Thursday, January 01, 2015
Wednesday, December 31, 2014
Creation of Matter?
"When the photon exits the medium, its identity is preserved," Lukin said. "It's the same effect we see with refraction of light in a water glass. The light enters the water, it hands off part of its energy to the medium, and inside it exists as light and matter coupled together, but when it exits, it's still light. The process that takes place is the same it's just a bit more extreme -- the light is slowed considerably, and a lot more energy is given away than during refraction." See: Seeing light in new light: Scientists create never-before-seen form of matter
Monday, December 29, 2014
The Axion of the Quark Gluon Pasma?
In physics, an anomalon is a hypothetical type of nuclear matter that shows an anomalously large reactive cross section. They were first noticed in experimental runs in the early 1980s as short tracks in film emulsions or plastic leaf detectors connected to medium-energy particle accelerators. The direction of the tracks demonstrated that they were the results of reactions taking place within the accelerator targets, but they stopped so quickly in the detectors that no obvious explanation for their behavior could be offered. A flurry of theoretical explanations followed, but over time a series of follow-up experiments failed to find strong evidence for the anomalons, and active study of the topic largely ended by the late 1980s.
***
Professor Emeritus Piyare L. Jain is a particle physicist at University at Buffalo. On December 6, 2006, he claimed discovery of the long-sought axion subatomic particle. [1]
The discovery involved Jain's use of 3-dimensional photographic medium targets in heavy-ion particle accelerators; modern detectors using electronic sensors were unable to detect the axion due to the very short distances and times involved, but the physical medium was able to identify about 1,200 Axion traces over years of experiment. Jain is one of the few currently working physicists with experience with that type of detector, which had been largely abandoned in favor of the modern electronic detectors.
***
Axions, would also have stopped interaction with normal matter at a different moment than other more massive dark particles. The lingering effects of this difference could perhaps be calculated and observed astronomically. Axions may hold the key to the Solar Corona heating problem.[40] See: Axion
***
Uploaded on Jan 9, 2011SETI Archive: http://seti.org/talks
The Sun's outer atmosphere or corona is heated to millions of degrees, considerably hotter than its cool surface or photosphere. Explanations for this long-standing enigma typically invoke the deposition in the corona of non-thermal energy generated by the interplay of convection and magnetic fields. However, the exact physical mechanism driving coronal heating remains unknown. During the past few years, recently built instruments like the Japanese Hinode satellite, the Swedish Solar Telescope in Spain and NASA's Solar Dynamics Observatory (SDO) combined with advanced numerical simulations have revealed a new window into how the Sun's atmosphere is energized. These results directly challenge current theories and highlight the importance of the interface region between the photosphere and corona for understanding how the solar atmosphere is heated. Dr. De Pontieu will present some of these results and describe how NASA's recently selected Interface Region Imaging Spectrograph, which is being built by Lockheed Martin's Solar and Astrophysics Laboratory in Palo Alto, in collaboration with NASA Ames, Smithsonian Astrophysical Observatory (SAO), Montana State University, Stanford University and the University of Oslo, will be able to address many of the outstanding issues and problems.
***
An article on IAXO has been published in the September 2014 issue of the CERN Courier. You can see the online version of the article here (link is external), or dowload the full CERN Courier issue here (link is external).
The central component of iAXo is a superconducting toroid magnet. The detector relies on a high magnetic field distributed across a large volume to convert solar axions to detectable X-ray photons. The magnet’s figure of merit is proportional to the square of the product of magnetic field and length, multiplied by the cross-sectional area filled with the magnetic field.IAXO: the International Axion Observatory -Pg 9 Sept 2014(PDF)
Posted by
PlatoHagel
at
6:40:00 AM
Labels:
Aurora,
Axion,
Quark Gluon PLasma,
SOHO,
Sun
Saturday, December 27, 2014
A Merry Christmas Sun Light
The sun emitted a significant solar flare, peaking at 7:24 p.m. EST on Dec. 19, 2014. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.
To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings.
This flare is classified as an X1.8-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
This video is public domain and can be downloaded at: http://svs.gsfc.nasa.gov/goto?11721
***
See Also:
Posted by
PlatoHagel
at
7:31:00 PM
Subscribe to:
Posts (Atom)