Thursday, April 10, 2014

More on Quantum Biology

If you push perspective into the area of quantum biology you will be very surprised.

 QUANTUM CHLOROPHYLL: Sunlight triggers wave-like motion in green chlorophyll, embedded in a protein structure, ........ that guides its function. GREGORY ENGEL




Early visions of wireless power actually were thought of by Nikola Tesla basically about 100 years ago. The thought that you wouldn't want to transfer electric power wirelessly, no one ever thought of that. They thought, "Who would use it if you didn't?" And so, in fact, he actually set about doing a variety of things. Built the Tesla coil. This tower was built on Long Island back at the beginning of the 1900s. And the idea was, it was supposed to be able to transfer power anywhere on Earth. We'll never know if this stuff worked. Actually, I think the Federal Bureau of Investigation took it down for security purposes, sometime in the early 1900s.See: http://www.ted.com/talks/eric_giler_demos_wireless_electricity.html


I think people have been behind the times a bit here on what may have been a interesting proposal in order to help the recharging system. Think of Photosynthesis and then think of nano-particulates and you will see they are quite advanced in terms of using this proposal in a varied productive means and not just with solar panels. I know of companies using this approach in shingle application.

But the one that I had thought of was one has its applicability toward helping electric cars is my favorite. You want to know? Do not have time and money to do development but I know the process is being explored and probably at this point being worked towards an application. Interested? Any developers here?:)

Nanocrystal solar: The solar cells at top were made on a roll-to-roll printer from an ink consisting of the rod-shaped inorganic semiconducting nanocrystals shown below. The cells were printed on a flexible metal foil and will be topped with a glass plate.
Credit: Solexant

An Idea: Percolating to the Surface




As well you might have understood why I claimed  Aristarchus Crater and Surrounding Region that since thinking beyond the boundaries on the planet it is important that quantum processes are used to develop the energy that is needed to survive on the moon?:)

The Map of B Mode Imprints


Figure 3: Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < ℓ < 120. Right: The equivalent maps for the first of the lensed-ΛCDM+noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines display the equivalent magnitude and orientation of the linear polarization. Note that excess B-mode is detected over lensing+noise with high signal-to-noise ratio in the map (s/n > 2 per map mode at ℓ ≈ 70). (Also note that the E-mode and B-mode maps use different color/length scales.)

BICEP2 2014 Release Figures from Papers

 You know the distinctions on how one might see information as purported to exist as gravitational waves  of course held my perspective. Like others,  is this a way in which BICEP has illustrated something of the every nature of space-time, as to my thoughts then, when it really was only about seeing a footprint in the WMAP.


Gravitational waves open up a new window on the universe that will allow us to probe events for which no electromagnetic signature exists. In the next few years, the ground-based interferometers GEO-600, LIGO, VIRGO and TAMA should be able to detect the high-frequency gravitational waves produced by extreme astrophysical objects, providing the first direct detection of these disturbances in space–time. With its much longer arm lengths, the space-based interferometer LISA will, if launched, be able to detect lower-frequency gravitational waves, possibly those generated by phase transitions in the early universe. At even lower frequencies, other experiments will look for tiny signatures of gravitational waves in the cosmic microwave background. Source: NASA.

Gravity Wave Spectrum


So it is a footprint then and I might show some of those maps and ask what do these footprints show in the early universe as to say, that given the inflationary timeline what can be garnered about looking back so far as to suggest 13.8 billion years and have such an imprint hold relevance, and equal the very nature of space-time itself.

Figure 18: Results of far-field beam characterization with a chopped thermal source. Left: Typical measured far-field beam on a linear scale. Middle: The Gaussian fit to the measured beam pattern. Right: The fractional residual after subtracting the Gaussian fit. Note finer color scale in the right-hand differenced map.

BICEP2 2014 Release Figures from Papers



The nature of the question for me is a "sensor mode developmental model" that chooses to exemplify gravitational waves over another and I had to make this clear for myself. So you can see where this has lead me. To where I want to further understand. If you choose not to show a comment then I guess that is where I lose.

 
Weber developed an experiment using a large suspended bar of aluminum, with a high resonant Q at a frequency of about 1 kH; the oscillation of the bar after it had been excited could be measured by a series of piezoelectric crystals mounted on it. The output of the system was put on a chart recorder like those used to record earthquakes. Weber studied the excursions of the pen to look for the occasional tone of a gravitational wave passing through the bar...

See:Weber Bars Ring True?

The analogy rests with how the nature of gravitational waves had been sounded so as to show a connection to the WMAP as a footprint. So you have this 2 dimensional map surface as to exemplary how gravitational waves may appear on it, yet,  the visual extent of that correlation is representative to me of a defined configuration space. You need your physics in order to establish any correlation to the timeline of the inflationary model and to see that such a map reveals efforts to penetrate the Planck era. To suggest quantum gravity.

At least two detectors located at widely separated sites are essential for the unequivocal detection of gravitational waves. Local phenomena such as micro-earthquakes, acoustic noise, and laser fluctuations can cause a disturbance at one site, simulating a gravitational wave event, but such disturbances are unlikely to happen simultaneously at widely separated sites. 

Correlating Gravitational Wave Production in LIGO
See Also:


So indeed to have such a map is very telling to me not just of the imprint but also of the sensory mode we had chosen to illustrate that map of the B mode representation as a valid model description of that early universe.

Wednesday, April 09, 2014

Why are Planets Round?



Learn how the force of gravity influences the shapes of planets. Visit a gravity trap and learn about the ultimate gravity trap, a black hole.

***

Schumann Resonances

So one might look at the earth in an interesting way other then in a gravitational one.



Lithospheric Magnetic Anomalies. A modeled image of Earth's magnetic field variations created as a result of science satellites like Magsat. nT = nanoteslas. The color bar indicates areas with positive and negative magnetic fields.

See: Space Geodesy Project

***


See Also:

Quantum Music



Quantum: Music at the Frontier of Science - QNC Performance

Published on Oct 19, 2012 The Kitchener-Waterloo Symphony and the Institute for Quantum Computing teamed up on Sept. 29, 2012, to present an innovative musical experiment called "Quantum: Music at the Frontier of Science." The concert served as the the grand finale of the grand opening celebrations of the Mike & Ophelia Lazaridis Quantum-Nano Centre at the University of Waterloo. Through narration, an eclectic musical programme, live narration and "sound experiments," the concert explored the surprisingly parallel paths followed by quantum science and orchestral music over the past century. The concert was created over the period of a year through meetings and brainstorming sessions between KW Symphony Music Director Edwin Outwater and researchers from the Institute for Quantum Computing.

***

See Also:


Thursday, April 03, 2014

Which large LHC experiment are you?




***

Studious, meticulous, and peculiarly-shaped, you are LHCb. As an introvert, you don't mind hiding in forgotten corners of pseudo-rapidity that more "popular" experiments ignore. Although your asymmetric features and reserved nature mean you're commonly mistaken for a fixed-target experiment, you are confident that your diligent, careful studies of CP violation will some day allow you to conquer the world.

Monday, March 31, 2014

The Reference Frame: BICEP is good news for string gas cosmology

The Reference Frame: BICEP is good news for string gas cosmology: Guest post by Robert Brandenberger of McGill University The indirect discovery of primordial gravitational waves on cosmological scales vi...

Thursday, March 27, 2014

Memory, as the Glue of Society





Our memories are our lives, and a fundamental basis of our culture. Collective memoirs of the past both bind society together and shape our potential future. With our brains we can travel through time and space, calling to mind places of significance, evoking images and emotions of past experiences. It's no wonder, then, that we so desperately fear the prospect of memory loss. See: The Neuroscience of Memory - Eleanor Maguire

Wednesday, March 26, 2014

What is LROC?

[NASA/GSFC/Arizona State University].
LROC Northern Polar Mosaic (LNPM)
The LROC team assembled 10,581 NAC images, collected over 4 years, into a spectacular northern polar mosaic. The LROC Northern Polar Mosaic (LNPM) is likely one of the world’s largest image mosaics in existence, or at least publicly available on the web, with over 680 gigapixels of valid image data covering a region (2.54 million km2, 0.98 million miles2) slightly larger than the combined area of Alaska (1.72 million km2) and Texas (0.70 million km2) -- at a resolution of 2 meters per pixel! To create the mosaic, each LROC NAC image was map projected on a 30 m/pixel Lunar Orbiter Laser Altimeter (LOLA) derived Digital Terrain Model (DTM) using a software package called the Integrated Software for Imagers and Spectrometers (ISIS). SEE: What is LROC

***

See Also:


Pricetag on Naming Mars Craters



Recently initiatives that capitalise on the public’s interest in space and astronomy have proliferated, some putting a price tag on naming space objects and their features, such as Mars craters. The International Astronomical Union (IAU) would like to emphasise that such initiatives go against the spirit of free and equal access to space, as well as against internationally recognised standards. Hence no purchased names can ever be used on official maps and globes. The IAU encourages the public to become involved in the naming process of space objects and their features by following the officially recognised (and free) methods. See: Concerns and Considerations with the Naming of Mars Craters
***
The Outer Space Treaty of 1967

Treaty on principles governing the activities of states in the exploration and use of outer space, including the moon and other celestial bodies.


Opened for signature at Moscow, London, and Washington on 27 January, 1967
THE STATES PARTIES. TO THIS TREATY,

INSPIRED by the great prospects opening up before mankind as a result of man's entry into outer space,

RECOGNIZING the common interest of all mankind in the progress of the exploration and use of outer space for peaceful purposes,

  BELIEVING that the exploration and use of outer space should be carried on for the benefit of all peoples irrespective of the degree of their economic or scientific development,

  DESIRING to contribute to broad international co-operation in the scientific as well as the legal aspects of the exploration and use of outer space for peaceful purposes,  

BELIEVING that such co-operation will contribute to the development of mutual understanding and to the strengthening of friendly relations between States and peoples,  

RECALLING resolution 1962 (XVIII), entitled "Declaration of Legal Principles Governing the Activities of States in the Exploration and Use of Outer Space", which was adopted unanimously by the United Nations General Assembly on 13 December 1963,  

RECALLING resolution 1884 (XVIII), calling upon States to refrain from placing in orbit around the earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction or from installing such weapons on celestial bodies, which was adopted unanimously by the United Nations General Assembly on 17 October 1963,  

TAKING account of United Nations General Assembly resolution 110 (II) of 3 November 1947, which condemned propaganda designed or likely to provoke or encourage any threat to the peace, breach of the peace or act of aggression, and considering that the aforementioned resolution is applicable to outer space,

CONVINCED that a Treaty on Principles Governing the Activitiesof States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, will further the Purposes and Principles ofthe Charter of the United Nations,
 

HAVE AGREED ON THE FOLLOWING:  

Article I
 

The exploration and use of outer space, including the moon and other celestial bodies, shall be carried out for the benefit and in the interests of all countries, irrespective of their degree of economic or scientific development, and shall be the province of all mankind. Outer space, including the moon and other celestial bodies, shall be free for exploration and use by all States without discrimination of any kind, on a basis of equality and in accordance with international law, and there shall be free access to all areas of celestial bodies. There shall be freedom of scientific investigation in outer space, including the moon and other celestial bodies, and States shall facilitate and encourage international co-operation in such investigation. 

  Article II
 

Outer space, including the moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means.  

Article III
 

States Parties to the Treaty shall carry on activities in the exploration and use of outer space, including the moon and other celestial bodies, in accordance with international law, including the Charter of the United Nations, in the interest of maintaining international peace and security and promoting international co- operation and understanding.

States Parties to the Treaty undertake not to place in orbit around the earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction, install such weapons on celestial bodies, or station such weapons in outer space in any other manner.
> The moon and other celestial bodies shall be used by all States Parties to the Treaty exclusively for peaceful purposes. The establishment of military bases, installations and fortifications, the testing of any type of weapons and the conduct of military manoeuvres on celestial bodies shall be forbidden. The use of military personnel for scientific research or for any other peaceful purposes shall not be prohibited. The use of any equipment or facility necessary for peaceful exploration of the moon and other celestial bodies shall also not be prohibited.  

Article V
 

States Parties to the Treaty shall regard astronauts as envoys of mankind in outer space and shall render to them all possible assistance in the event of accident, distress, or emergency landing on the territory of another State Party or on the high seas. When astronauts make such a landing, they shall be safely and promptly returned In carrying on activities in outer space and on celestial bodies, the astronauts of one State Party shall render all possible assistance to the astronauts of other States Parties. States Parties to the Treaty shall immediately inform the other States Parties to the Treaty or the Secretary-General of the United Nations of any phenomena they discover in outer space, including the Moon and other celestial bodies, which could constitute a danger to the life or health of astronauts.  

Article VI
 

States Parties to the Treaty shall bear international responsibility for national activities in outer space, including the moon and other celestial bodies, whether such activities are carried on by governmental agencies or by non-governmental entities, and for assuring that national activities are carried out in conformity with the provisions set forth in the present Treaty. The activities of non- governmental entities in outer space, including the moon and other celestial bodies, shall require authorization and continuing supervision by the appropriate State Party to the Treaty. When activities are carried on in outer space, including the moon and other celestial bodies, by an international organization, responsibility for compliance with this Treaty shall be borne both by the international organization and by the States Parties to the Treaty participating in such organization.  

Article VII
 

Each State Party to the Treaty that launches or procures the launching of an object into outer space, including the moon and other celestial bodies, and each State Party from whose territory or facility an object is launched, is internationally liable for damage to another State Party to the Treaty or to its natural or juridical persons by such object or its component parts on the Earth, in air space or in outer space, including the moon and other celestial bodies.

  
 Article VIII
 

A State Party to the Treaty on whose registry an object launched into outer space is carried shall retain jurisdiction and control over such object, and over any personnel thereof, while in outer space or on a celestial body. Ownership of objects launched into outer space, including objects landed or constructed on a celestial body, and of their component parts, is not affected by their presence in outer space or on a celestial body or by their return to the Earth. Such objects or component parts found beyond the limits of the State Party of the Treaty on whose registry they are carried shall be returned to that State Party, which shall, upon request, furnish identifying data prior to their return.  

Article IX
 

In the exploration and use of outer space, including the moon and other celestial bodies, States Parties to the Treaty shall be guided by the principle of co-operation and mutual assistance and shall conduct all their activities in outer space, including the moon and other celestial bodies, with due regard to the corresponding interests of all other States Parties to the Treaty. States Parties to the Treaty shall pursue studies of outer space, including the moon and other celestial bodies, and conduct exploration of them so as to avoid their harmful contamination and also adverse changes in the environment of the Earth resulting from the introduction of extraterrestrial matter and, where necessary, shall adopt appropriate measures for this purpose. If a State Party to the Treaty has reason to believe that an activity or experiment planned by it or its nationals in outer space, including the moon and other celestial bodies, would cause potentially harmful interference with activities of other States Parties in the peaceful exploration and use of outer space, including the moon and other celestial bodies, it shall undertake appropriate international consultations before proceeding with any such activity or experiment. A State Party to the Treaty which has reason to believe that an activity or experiment planned by another State Party in outer space, including the moon and other celestial bodies, would cause potentially harmful interference with activities in the peaceful exploration and use of outer space, including the moon and other celestial bodies, may request consultation concerning the activity or experiment.  

Article X
 

In order to promote international co-operation in the exploration and use of outer space, including the moon and other celestial bodies, in conformity with the purposes of this Treaty, the States Parties to the Treaty shall consider on a basis of equality any requests by other States Parties to the Treaty to be afforded an opportunity to observe the flight of space objects launched by those States.
The nature of such an opportunity for observation and the conditions under which it could be afforded shall be determined by agreement between the States concerned.

   
Article XI
 

In order to promote international co-operation in the peaceful exploration a
nd use of outer space, States Parties to the Treaty conducting activities in outer space, including the moon and other celestial bodies, agree to inform the Secretary-General of the United Nations as well as the public and the international scientific community, to the greatest extent feasible and practicable, of the nature, conduct, locations and results of such activities. On receiving the said information, the Secretary-General of the United Nations should be prepared to disseminate it immediately and effectively.

  Article XII
 

All stations, installations, equipment and space vehicles on the moon and other celestial bodies shall be open to representatives of other States Parties to the Treaty on a basis of reciprocity. Such representatives shall give reasonable advance notice of a projected visit, in order that appropriate consultations may be held and that maximum precautions may be taken to assure safety and to avoid interference with normal operations in the facility to be visited.  

Article XIII
 

The provisions of this Treaty shall apply to the activities of States Parties to the Treaty in the exploration and use of outer space, including the moon and other celestial bodies, whether such activities are carried on by a single State Party to the Treaty or jointly with other States, including cases where they are carried on within the framework of international inter-governmental organizations. Any practical questions arising in connexion with activities carried on by international inter-governmental organizations in the exploration and use of outer space, including the moon and other celestial bodies, shall be resolved by the States Parties to the Treaty either with the appropriate international organization or with one or more States members of that international organization, which are Parties to this Treaty.  

Article XIV
 

1. This Treaty shall be open to all States for signature. Any State which does not sign this Treaty before its entry into force in accordance with paragraph 3 of this Article may accede to it at any time.
2. This Treaty shall be subject to ratification by signatory States. Instruments of ratification and instruments of accession shall be deposited with the Governments of the United Kingdom of Great Britain and Northern Ireland, the Union of Soviet Socialist Republics and the United States of America, which are hereby designated the Depositary Governments.
3. This Treaty shall enter into force upon the deposit of instruments of ratification by five Governments including the Governments designated as Depositary Governments under this Treaty.
4. For States whose instruments of ratification or accession are deposited subsequent to the entry into force of this Treaty, it shall enter into force on the date of the deposit of their instruments of ratification or accession.
 5. The Depositary Governments shall promptly inform all signatory and acceding States of the date of each signature, the date of deposit of each instrument of ratification of and accession to this Treaty, the date of its entry into force and other notices.
6. This Treaty shall be registered by the Depositary Governments pursuant to Article 102 of the Charter of the United Nations.
 

Article XV
 

Any State Party to the Treaty may propose amendments to this Treaty. Amendments shall enter into force for each State Party to the Treaty accepting the amendments upon their acceptance by a majority of the States Parties to the Treaty and thereafter for each remaining State Party to the Treaty on the date of acceptance by it.  

Article XVI
 

Any State Party to the Treaty may give notice of its withdrawal from the Treaty one year after its entry into force by written notification to the Depositary Governments. Such withdrawal shall take effect one year from the date of receipt of this notification.  

Article XVII
 

This Treaty, of which the Chinese, English, French, Russian and Spanish texts are equally authentic, shall be deposited in the archives of the Depositary Governments. Duly certified copies of this Treaty shall be transmitted by the Depositary Governments to the Governments of the signatory and acceding States. 

 IN WITNESS WHEREOF the undersigned, duly authorised, have signed this Treaty.  

DONE in triplicate, at the cities of London, Moscow and Washington, the twenty-seventh day of January, one thousand nine hundred and sixty-seven.
 
***


See Also: