Monday, December 23, 2013

The Neutrino Sky

A neutrino sky map based on data taken with 40 and 59 strings in the IceCube detector.
Image credit: Juan Aguilar/IceCube.
Astrophysical neutrinos are produced in the interactions of cosmic rays with an ambient medium of gas (protons) and photons of different energies. Once produced, these cosmic neutrinos can propagate cosmological distances and reach the Earth practically without interactions. They therefore carry unique information about the sources of cosmic rays, their acceleration and the composition of the most energetic phenomena in the universe. See:Looking at the neutrino sky





Those are the colorful names given to two events observed over the last couple of years by Ice Cube. What makes them remarkable is their very high energies; over 30 trillion electron volts (TeV). See: Neutrinos From the Sky


 
A 200 GeV iron shower, animated


 
Air shower formation in the atmosphere. First proton collides with an air molecule creating pions, protons and neutrons.




See Also:

Saturday, December 21, 2013

Weber Bars Ring True?



Gravitational Radiation

Gravitational waves have a polarization pattern that causes objects to expand in one direction, while contracting in the perpendicular direction. That is, they have spin two. This is because gravity waves are fluctuations in the tensorial metric of space-time.


How would you map this above?

WMAP image of the Cosmic Microwave Background Radiation


Here's the thing for those blog followers who are interested in the application of sound as a visual representation of an external world of senses.



 In this example I’m going to map speed to the pitch of the note, length/postion to the duration of the note and number of turns/legs/puffs to the loudness of the note.See: How to make sound out of anything.

I have my reasons for looking at the trail that began with Gravitational wave research and development. If we are accustom to seeing and concreting all that reality has for us,  can a question be raised in mind with how one has been shocked by an anomaly?

I am not asking for anyone  to abandon their views on the science of,  just respect that while not following the rules of  science here as to my motivational underpinnings, I have asked if science can see gravity in ways that have not be thought of before.  This is not to counter anything that has been done before.

The historic approach to Gravitational Research was important as well,  to trace it back to it's beginning.

Can we use such measures to exemplify an understanding of the world we live according  to a qualitative approach? This has occupied my thoughts back to when I first blogged about JosephWeber in 2005. Here is a 2000 article linked.
In the late 1950s, Weber became intrigued by the relationship between gravitational theory and laboratory experiments. His book, General Relativity and Gravitational Radiation, was published in 1961, and his paper describing how to build a gravitational wave detector first appeared in 1969. Weber's first detector consisted of a freely suspended aluminium cylinder weighing a few tonnes. In the late 1960s and early 1970s, Weber announced that he had recorded simultaneous oscillations in detectors 1000 km apart, waves he believed originated from an astrophysical event. Many physicists were sceptical about the results, but these early experiments initiated research into gravitational waves that is still ongoing. Current gravitational wave experiments, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA), are descendants of Weber's original work. See:Joseph Weber 1919 - 2000
***



Space, we all know what it looks like. We've been surrounded by images of space our whole lives, from the speculative images of science fiction to the inspirational visions of artists to the increasingly beautiful pictures made possible by complex technologies. But whilst we have an overwhelmingly vivid visual understanding of space, we have no sense of what space sounds like.

  See previous entries on "Weber Bar" by typing in Search Feature on side bar. See also below.


Thursday, December 19, 2013

Gaia in Space

Soyuz VS06 with Gaia space observatory blasts off from Europe's Spaceport
ESA PR 44-2013: ESA’s Gaia mission blasted off this morning on a Soyuz rocket from Europe’s Spaceport in Kourou, French Guiana, on its exciting mission to study a billion suns. 

Gaia is destined to create the most accurate map yet of the Milky Way. By making accurate measurements of the positions and motions of 1% of the total population of roughly 100 billion stars, it will answer questions about the origin and evolution of our home Galaxy. 

The Soyuz launcher, operated by Arianespace, lifted off at 09:12 GMT (10:12 CET). About ten minutes later, after separation of the first three stages, the Fregat upper stage ignited, delivering Gaia into a temporary parking orbit at an altitude of 175 km. See: LiftOff for ESA's billion-dollar star surveyor

Space is not flat.

Wednesday, December 18, 2013

Van Ellen Belt: Decade Age Old Mystery

Schematic illustration of local electron acceleration by chorus
The top panel shows electron fluxes before (left) and after (right) a geomagnetic storm. The injection of low-energy plasma sheet electrons into the inner magnetosphere (1) causes chorus wave excitation in the low-density region outside the cold plasmasphere (2). Local energy diffusion associated with wave scattering leads to the development of strongly enhanced phase space density just outside the plasmapause (3). Subsequently, radial diffusion can redistribute the accelerated electrons inwards or outwards from the developing peak (4).
Credit: Jacob Bortnik/UCLA
  

New research using data from NASA’s Van Allen Probes mission helps resolve decades of scientific uncertainty over the origin of ultra-relativistic electrons in the Earth’s near space environment, and is likely to influence our understanding of planetary magnetospheres throughout the universe. See: Scientists solve a decades-old mystery of Earth's Van Allen radiation belts

Jet Creation


Wavelength Views of the Sun



This movie, created by NASA's Scientific Visualization Studio at NASA's Goddard Space Flight Center in Greenbelt, Md., shows how features of the sun can appear dramatically different when viewed in different wavelengths. Image Credit: NASA's Goddard Space Flight Center

Telescopes help distant objects appear bigger, but this is only one of their advantages. Telescopes can also collect light in ranges that our eyes alone cannot see, providing scientists ways of observing a whole host of material and processes that would otherwise be inaccessible. A new NASA movie of the sun based on data from NASA's Solar Dynamics Observatory, or SDO, shows the wide range of wavelengths – invisible to the naked eye – that the telescope can view. SDO converts the wavelengths into an image humans can see, and the light is colorized into a rainbow of colors.NASA's SDO Shows the Sun's Rainbow of Wavelengths

Friday, December 13, 2013

Symmetry Breaking and the Crab Nebula

The connection between superfluidity and symmetry breaking has had a glorious history. It has left us a rich legacy of fertile ideas, that seems far from exhaustion. PG 60 Superfluidity and Symmetry Breaking
You know while there have been processes unfolding with regard to supersymmetry, for the life of it,  I am having a hard time ever denying to myself that the result of any beginning had to have some emergent feature that arose from the very nature of the big bang itself.



So to then, one may see some signs in a biological sense,  as to the nature of evolution? So,  that all things can be defined in this way. But the issue then for me is how "information can exist, " so as to say that such a direction for that evolution,  as an emergent product,  must have some location with which such presence makes itself know(far left of the picture above)? Sure,  because of my ignorance, I would be asking how such information could have ever come into being so as to say that this universe is the one with which such expressions came to be, so I accept the universe as it is.

Click on image above and you create a larger view of a microscopic world

So to then,  for such a gap to exist.  I was most certainly thinking about the LHC's use with which such reductionism were being taken.  I was looking for such signatures as to wonder that if such a location is found then(QGP),  so we could say indeed,  the beginning of the universe, and the correlation drawn,  as to the ever reducibility pursuit as some relation to nature?


The Crab Nebula, created by a supernova seen nearly a thousand years ago, is one of the sky's most famous "star wrecks." For decades, most astronomers have regarded it as the steadiest beacon at X-ray energies, but data from orbiting observatories show unexpected variations. Since 2008, it has faded by 7 percent, activity likely tied to the environment around its central neutron star. (Video Credit: NASA's Goddard Space Flight Center)


Cosmologically it had to make sense too. So I  looked at events in the cosmos to help me understand what it is that was created in the moments we align ourselves too,as  in the LHC. While I looked at the picture(jet development and expression) above as to the timing with which such a environment, it is now reduced too, the Crab Nebula in its design. Would you deny the Crab Nebula had a previous showing with which the jets them self began to emerge?

An example then exists for me as to how such contributions that could arise in any nebula could have ever contributed to the way the universe is,  and if all such contributions taken to the same question,  helps to define the universe in ways that were preceded . Where that nature of the information is to reside.

So while we had found our limits with regard to Planck scale,  it is thought to me that such a symmetry had exist,  that all forms of that symmetry expresses itself as a forming dualistic nature,  for a symmetry breaking to exist,  and for such a division to take place from such a perfect place.

Monday, December 09, 2013

Sunday, December 01, 2013

Fermi's Now Deeper Study of the High-Energy Cosmos



This compilation summarizes the wide range of science from the first five years of NASA's Fermi Gamma-ray Space Telescope. Fermi is a NASA observatory designed to reveal the high-energy universe in never-before-seen detail. Launched in 2008, Fermi continues to give astronomers a unique tool for exploring high-energy processes associated with solar flares, spinning neutron stars, outbursts from black holes, exploding stars, supernova remnants and energetic particles to gain insight into how the universe works.NASA | Fermi at Five Years



The Crab Nebula, created by a supernova seen nearly a thousand years ago, is one of the sky's most famous "star wrecks." For decades, most astronomers have regarded it as the steadiest beacon at X-ray energies, but data from orbiting observatories show unexpected variations. Since 2008, it has faded by 7 percent, activity likely tied to the environment around its central neutron star. (Video Credit: NASA's Goddard Space Flight Center)