Saturday, June 15, 2013

Musical Acoustics


A recipe for a violin

Chladni patterns show the geometry of the different types of vibration of violin plates. This site has an introductory explanation of modes of vibration and a library of photographs of the Chladni patterns of the bellies and backplates of two different violins (one mass-produced and one hand-made). It also has photographs of plates with regular geometries which assist in understanding the violin modes. For some related history, see Chladni's law. For some Chladni patterns on metal plates, with sound files, see Acoustics of bell plates. To make your own Chladni patters, try this site.








See Also:

Cool horizons for entangled black holes



Schwarzschild wormholes


General relativity contains solutions in which two distant black holes are connected through the interior via a wormhole, or Einstein-Rosen bridge. These solutions can be interpreted as maximally entangled states of two black holes that form a complex EPR pair. We suggest that similar bridges might be present for more general entangled states.
In the case of entangled black holes one can formulate versions of the AMPS(S) paradoxes and resolve them. This suggests possible resolutions of the firewall paradoxes for more general situations.
Cool horizons for entangled black holes Juan Maldacena, Leonard Susskind




One of the most enjoyable and inspiring physics papers I have read in recent years is this one by Mark Van Raamsdonk. Building on earlier observations by Maldacena and by Ryu and Takayanagi. Van Raamsdonk proposed that quantum entanglement is the fundamental ingredient underlying spacetime geometry. Since my first encounter with this provocative paper, I have often mused that it might be a Good Thing for someone to take Van Raamsdonk’s idea really seriously. Entanglement=Wormholes preskill



See Also:

Tuesday, June 11, 2013

Time Begins, When Counting Begins?

Like Copernicus' heliocentric theory, Newton's law of gravitation, and Darwin's theory of evolution, non-Euclidean geometry has radically affected science, philosophy, and religion. It is fair to say that no more cataclysmic event has ever taken place in the history of all thought.Saccheri's Flaw while eliminating Euclid's "Flaw" The Evolution of Non-Euclidean Geometry
The basis of any experience has it's counter part in how we have established the lines to which we place all experiencing on? You cannot count backward to zero(what is before zero...ummmmmm nothing), so what takes zero's place? It would be like asking what existed before this universe, so fundamentally they looked at issues around the false vacuum to the true. But cosmologically they call this universe "a box," and anything outside of it not fundamental?


Time has no independent existence apart from the order of events by which we measure it.Albert Einstein

When does counting begin? Discover Patterns.  Fibonacci Numbers perhaps? How does that apply to the natural world?

Any measure then, serves to activate a counting to begin? So you choose to be discrete. Some how you cannot distance yourself from any operation as to say the location is other then a configuration space, and that you are operating within it?

So the question is, when do you first become aware? What is considered outside of time, if you think that time refers too, when counting begins? So you are in your subjective states, whether these are real or not remains to be seen, so how do you quantify this? Do you have a way of keeping time in the subjective world.


Abstract space(mathematics) are totally outside of time?



I guess it is sort of like asking what first cause is to imply. Yet, theoretical definition is to say that string theory pushes back time much further to such a beginning then Steven Weinberg's first three minutes. The act in itself is related to "microseconds" when pushing back perspective, and not Weinberg's minutes

The background(WMAP) initially is a foundation with which the universe is painted. Then you add in the progressiveness of the parameters with which you use to define the universe?

So theoretically, you start counting when? The abstractness is contained in the mathematical structure of the universe which has been chosen to be perceived by observing in that abstract framework.

When you've chosen virtually reality, you have choose to model the framework(subjective /objectively) as well? We use it to model abstract language. Is that real?

So recap on use of measure of natural units then.


In physics, natural units are physical units of measurement defined in terms of universal physical constants in such a manner that some chosen physical constants take on the numerical value of one when expressed in terms of a particular set of natural units. Natural units are intended to elegantly simplify particular algebraic expressions appearing in physical law or to normalize some chosen physical quantities that are properties of universal elementary particles and that may be reasonably believed to be constant. However, what may be believed and forced to be constant in one system of natural units can very well be allowed or even assumed to vary in another natural unit system. Natural units are natural because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are often, without qualification, called "natural units" but are only one system of natural units among other systems. Planck units might be considered unique in that the set of units are not based on properties of any prototype, object, or particle but are based only on properties of free space.Natural units
 So we have effectively run into a problem.


Click the image to open in full size.  

TWO UNIVERSES of different dimension and obeying disparate physical laws are rendered completely equivalent by the holographic principle. Theorists have demonstrated this principle mathematically for a specific type of five-dimensional spacetime ("anti–de Sitter") and its four-dimensional boundary. In effect, the 5-D universe is recorded like a hologram on the 4-D surface at its periphery. Superstring theory rules in the 5-D spacetime, but a so-called conformal field theory of point particles operates on the 4-D hologram. A black hole in the 5-D spacetime is equivalent to hot radiation on the hologram--for example, the hole and the radiation have the same entropy even though the physical origin of the entropy is completely different for each case. Although these two descriptions of the universe seem utterly unalike, no experiment could distinguish between them, even in principle.

When you are looking out toward the universe you are looking for the reasons as to why the universe is doing what it is doing. What is happening in one place in terms of black hole production in the cosmos? Do these have implications, as in other cosmological sources as to imply, the universe is doing what it is doing?
 



See Also:

Tuesday, June 04, 2013

Quantum Biology and the Hidden of Nature


Can the spooky world of quantum physics explain bird navigation, photosynthesis and even our delicate sense of smell? Clues are mounting that the rules governing the subatomic realm may play an unexpectedly pivotal role in the visible world. Join leading thinkers in the emerging field of quantum biology as they explore the hidden hand of quantum physics in everyday life and discuss how these insights may one day revolutionize thinking on everything from the energy crisis to quantum computers.See:Quantum Biology and the Hidden Nature of Nature World Science Festival

Multiverse: One Universe or Many

The inflationary theory of cosmology, an enduring theory about our universe and how it was formed, explains that just after the Big Bang, the universe went through a period of rapid expansion. This theory has been critical to understanding what’s going on in the cosmos today. But now, this long-held notion—which seems to suggest as-yet-unproven and perhaps unprovable features such as the multiverse—is under increasing attack. Through informed debate among architects of the inflationary theory and its prime competitors, this program will explore our best attempts to understand where we came from. See: Multiverse: One Universe or Many

Monday, June 03, 2013

The Genetics of Spacetime

It is interesting to discover a thought process that one can tap into which allows us to think in the way that we do?;) I'll explain a bit more after you read the quote and link supplied.

http://www.flickr.com/photos/h-k-d/4291413264/


If our experience of time and space share similar neural correlates, it begets a fundamental question: are space and time truly distinct in the mind, or are they the product of a generalized neurocognitive system that allows us to understand the world? See:Decoding Space and Time in the Brain

So the question here of genetics as a foundational basis for which the world takes on new meaning and content, is also  to suggest that such an evolution is mind/brain changing. Right?


 
 All-sky map of the CMB, created from 9 years of WMAP data

I have to wait until something appears that is missing so as to show that the current developments in our technologies(WMAP) are based on the spectrum of possibilities in the way we dive deeper into the reality.

  
Comparison of CMB results from COBE, WMAP and Planck – March 21, 2013.

  Cosmologically, it is appealing that we seek to describe the universe optically in so many ways. This allows us to look deeper into the cosmos then we did before. This is a established trade route then with which to accept a sensory derivation of the cosmos. This would have intermingled with the process genetically disposed so as to imbue our sight of. It becomes neurologically appealing as insight is generated?


 B-modes retain their special nature as manifest in the fact that they can possess a handedness that distinguishes left from right. For example here are two polarization fields with the same structure but in the E-mode on the left and the B-mode on the right:
See: Anomalous Alignments in the Cosmic Microwave Background

So I am suggesting that such an evolution and development of consciousness would be to accept that the depth of our seeing is to go much further if we penetrate the cosmos in ways that we have not considered before. Examples already in progress are inherent in how we look at our Sun in terms of the Heliophysics that has been established so as to see expected cosmos rays plummeting to earth and spraying our planet. This view already insights a neurological function of space?

If you sprinkle fine sand uniformly over a drumhead and then make it vibrate, the grains of sand will collect in characteristic spots and figures, called Chladni patterns. These patterns reveal much information about the size and the shape of the drum and the elasticity of its membrane. In particular, the distribution of spots depends not only on the way the drum vibrated initially but also on the global shape of the drum, because the waves will be reflected differently according to whether the edge of the drumhead is a circle, an ellipse, a square, or some other shape.

In cosmology, the early Universe was crossed by real acoustic waves generated soon after Big Bang. Such vibrations left their imprints 300 000 years later as tiny density fluctuations in the primordial plasma. Hot and cold spots in the present-day 2.7 K CMB radiation reveal those density fluctuations. Thus the CMB temperature fluctuations look like Chaldni patterns resulting from a complicated three-dimensional drumhead that.
The Shape of Space after WMAP data


See Also:

Sunday, June 02, 2013

Two Paul Steinhardt Projects: "Cyclic Universe" and "Quasicrystals"



Two Paul Steinhardt Projects: "Cyclic Universe" and "Quasicrystals"






Albert Einstein Professor in Science, Departments of Physics and Astrophysical...
Quasi-elegance....As a young student first reading Weyl's book, crystallography seemed like the "ideal" of what one should be aiming for in science: elegant mathematics that provides a complete understanding of all physical possibilities. Ironically, many years later, I played a role in showing that my "ideal" was seriously flawed. In 1984, Dan Shechtman, Ilan Blech, Denis Gratias and John Cahn reported the discovery of a puzzling manmade alloy of aluminumand manganese with icosahedral symmetry. Icosahedral symmetry, with its six five-fold symmetry axes, is the most famous forbidden crystal symmetry. As luck would have it, Dov Levine (Technion) and I had been developing a hypothetical idea of a new form of solid that we dubbed quasicrystals, short for quasiperiodic crystals. (A quasiperiodic atomic arrangement means the atomic positions can be described by a sum of oscillatory functions whose frequencies have an irrational ratio.) We were inspired by a two-dimensional tiling invented by Sir Roger Penrose known as the Penrose tiling, comprised of two tiles arranged in a five-fold symmetric pattern. We showed that quasicrystals could exist in three dimensions and were not subject to the rules of crystallography. In fact, they could have any of the symmetries forbidden to crystals. Furthermore, we showed that the diffraction patterns predicted for icosahedral quasicrystals matched the Shechtman et al. observations. Since 1984, quasicrystals with other forbidden symmetries have been synthesized in the laboratory. The 2011 Nobel Prize in Chemistry was awarded to Dan Shechtman for his experimental breakthrough that changed our thinking about possible forms of matter. More recently, colleagues and I have found evidence that quasicrystals may have been among the first minerals to have formed in the solar system.

The crystallography I first encountered in Weyl's book, thought to be complete and immutable, turned out to be woefully incomplete, missing literally an uncountable number of possible symmetries for matter. Perhaps there is a lesson to be learned: While elegance and simplicity are often useful criteria for judging theories, they can sometimes mislead us into thinking we are right, when we are actually infinitely wrong. See:

2012 : WHAT IS YOUR FAVORITE DEEP, ELEGANT, OR BEAUTIFUL EXPLANATION?



See Also:

All-sky map

All-sky map of the CMB, created from 9 years of WMAP data

Comparison of CMB results from COBE, WMAP and Planck – March 21, 2013.



Working out what happened in the moments after the Big Bang is difficult. Scientists can come up with theories, but in the end they are useful only if they can be tested. Nobel prizewinner Robert Laughlin is passionate about experiments. He challenges the students in this film, and laureate David Gross, to come up with ways to test our big ideas about the Universe. The two laureates make a bet. Watch the film to find out more and to decide who wins.See:Betting on the cosmos - with David Gross and Robert Laughlin



See Also:

Saturday, June 01, 2013

Hmmmm...Pringles Potato Chip Still?

Solving quantum field theories via curved spacetimes by Igor R. Klebanov and Juan M. Maldacena
IN their figure 2. Hyperbolic space, and their comparative relation to the M.C.Escher's Circle Limit woodcut, Klebanov and Maldacena write, " but we have replaced Escher's interlocking fish with cows to remind readers of the physics joke about the spherical cow as an idealization of a real one. In anti-de Sitter/conformal theory correspondence, theorists have really found a hyperbolic cow."

Does Planck 2013 Data hurt the continuance of geometrical underpinnings?


The recent Planck satellite combined with earlier results eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported in the analysis of the collaboration. More important, though, is that all the simplest inflaton models are disfavored by the data while the surviving models -- namely, those with plateau-like potentials -- are problematic. We discuss how the restriction to plateau-like models leads to three independent problems: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty which we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.See: Inflationary paradigm in trouble after Planck2013



 
X-ray: NASA/CXC/UNAM/Ioffe/D.Page,P.Shternin et al; Optical: NASA/STScI; Illustration: NASA/CXC/M.Weiss





See: