Monday, October 31, 2011

Gran Sasso and Fermilab

Gran Sasso

***
deconstruction: soudan mural
The Soudan mural is next to the 6000-ton MINOS detector. Mural artists: Joseph Giannetti, Leila Giannetti, Mick Pulsifer. Funded by a grant from the University of Minnesota. (Credit: Fermilab Visual Media Services)
***
Fermilab experiment weighs in on neutrino mystery
Scientists of the MINOS experiment at the Department of Energy’s Fermi National Accelerator Laboratory announced today (June 24) the results from a search for a rare phenomenon, the transformation of muon neutrinos into electron neutrinos. The result is consistent with and significantly constrains a measurement reported 10 days ago by the Japanese T2K experiment, which announced an indication of this type of transformation.

The results of these two experiments could have implications for our understanding of the role that neutrinos may have played in the evolution of the universe. If muon neutrinos transform into electron neutrinos, neutrinos could be the reason that the big bang produced more matter than antimatter, leading to the universe as it exists today.

The Main Injector Neutrino Oscillation Search (MINOS) at Fermilab recorded a total of 62 electron neutrino-like events. If muon neutrinos do not transform into electron neutrinos, then MINOS should have seen only 49 events. The experiment should have seen 71 events if neutrinos transform as often as suggested by recent results from the Tokai-to-Kamioka (T2K) experiment in Japan. The two experiments use different methods and analysis techniques to look for this rare transformation.
To measure the transformation of muon neutrinos into other neutrinos, the MINOS experiment sends a muon neutrino beam 450 miles (735 kilometers) through the earth from the Main Injector accelerator at Fermilab to a 5,000-ton neutrino detector, located half a mile underground in the Soudan Underground Laboratory in northern Minnesota. The experiment uses two almost identical detectors: the detector at Fermilab is used to check the purity of the muon neutrino beam, and the detector at Soudan looks for electron and muon neutrinos. The neutrinos’ trip from Fermilab to Soudan takes about one four hundredths of a second, giving the neutrinos enough time to change their identities.

For more than a decade, scientists have seen evidence that the three known types of neutrinos can morph into each other. Experiments have found that muon neutrinos disappear, with some of the best measurements provided by the MINOS experiment. Scientists think that a large fraction of these muon neutrinos transform into tau neutrinos, which so far have been very hard to detect, and they suspect that a tiny fraction transform into electron neutrinos.

The observation of electron neutrino-like events in the detector in Soudan allows MINOS scientists to extract information about a quantity called sin213 (pronounced sine squared two theta one three). If muon neutrinos don’t transform into electron neutrinos, this quantity is zero. The range allowed by the latest MINOS measurement overlaps with but is narrower than the T2K range. MINOS constrains this quantity to a range between 0 and 0.12, improving on results it obtained with smaller data sets in 2009 and 2010. The T2K range for sin213 is between 0.03 and 0.28.
“MINOS is expected to be more sensitive to the transformation with the amount of data that both experiments have,” said Fermilab physicist Robert Plunkett, co-spokesperson for the MINOS experiment. “It seems that nature has chosen a value for sin213 that likely is in the lower part of the T2K allowed range. More work and more data are really needed to confirm both these measurements.”
The MINOS measurement is the latest step in a worldwide effort to learn more about neutrinos. MINOS will continue to collect data until February 2012. The T2K experiment was interrupted in March when the severe earth quake in Japan damaged the muon neutrino source for T2K. Scientists expect to resume operations of the experiment at the end of the year. Three nuclear-reactor based neutrino experiments, which use different techniques to measure sin213, are in the process of starting up.
“Science usually proceeds in small steps rather than sudden, big discoveries, and this certainly has been true for neutrino research,” said Jenny Thomas from University College London, co-spokesperson for the MINOS experiment. “If the transformation from muon neutrinos to electron neutrinos occurs at a large enough rate, future experiments should find out whether nature has given us two light neutrinos and one heavy neutrino, or vice versa. This is really the next big thing in neutrino physics.”
The MINOS experiment involves more than 140 scientists, engineers, technical specialists and students from 30 institutions, including universities and national laboratories, in five countries: Brazil, Greece, Poland, the United Kingdom and the United States. Funding comes from: the Department of Energy Office of Science and the National Science Foundation in the U.S., the Science and Technology Facilities Council in the U.K; the University of Minnesota in the U.S.; the University of Athens in Greece; and Brazil's Foundation for Research Support of the State of São Paulo (FAPESP) and National Council of Scientific and Technological Development (CNPq).

Fermilab is a national laboratory supported by the Office of Science of the U.S. Department of Energy, operated under contract by Fermi Research Alliance, LLC.
For more information about MINOS and related experiments, visit the Fermilab neutrino website: http://www.fnal.gov/pub/science/experiments/intensity/

See: 

Intensity Frontier


See Also: The Reference Frame: CMS: a very large excess of diphotons

Thursday, October 27, 2011

TRIUMF Dragon

ISAC and DRAGON, the Detector of Recoils And Gammas Of Nuclear reactions

TRIUMF has long been addressing big questions about the origins of matter in our universe by studying the interactions among elementary particles or essential nuclei.  The DRAGON experiment at TRIUMF is an apparatus designed to measure the rates of nuclear reactions that are important in astrophysics and the formation of the chemical elements. The big question we are asking is, "Where do the elements around us come from?" and "What happens inside a supernova and what does it produce?"  One new experiments at TRIUMF, S1227, recently looked at a process that creates lithium and neutrinos within ancient stars. See: A New Look Inside Ancient Stars

ICECUBE Neutrinos

Another Big thank you to ICECUBE Blog.


The IceCube project at the South Pole needed a new server cluster to reconstruct raw data, so it selected Dell PowerEdge servers for the HPC solution.



The IceCube Neutrino Observatory has just completed construction in Antarctica as of January 2011, and will help scientists search for elusive neutrinos that can help us map out the universe in new and exciting ways. I traveled to the South Pole in November and December 2009 to participate in this project, and reported back to classrooms across the US. This stop-motion animated video is an introduction to the IceCube Neutrino Observatory, answering basic questions such as: What is a neutrino? how can we detect them? How does IceCube work? See: Dell Powers IceCube Neutrino Observatory in Antartica

XKCD Significant-Speed of Light Issue?

You got to love it when correlations can be made, and a thank you to the ICECUBE Blog
If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke. That's pretty small; although bear in mind that lots of distributions like this get plotted. If you plot 100 different distributions, the chances become about one in a hundred (0.01) that you'll see something odd in one of them. The Tevatron goes bump

http://imgs.xkcd.com/comics/significant.png

ICECUBE Blogging Research Material and more

In regards to Cherenkov Light

Thinking outside the box See: A physicist inthe cancer lab

Ackerman became interested in physics in middle school, reading popular science books about quantum mechanics and string theory. As an undergraduate at the Massachusetts Institute of Technology, she traveled to CERN, the European particle physics laboratory near Geneva, to work on one of the detectors at the Large Hadron Collider, the most powerful particle collider in the world. Then she spent a summer at SLAC working on BaBar, an experiment investigating the universe’s puzzling shortage of antimatter, before starting her graduate studies there in 2007.

 Linking Experiments(Majorana, EXO); How do stars create the heavy elements? (DIANA); What role did neutrinos play in the evolution of the universe? (LBNE). In addition, scientists propose to build a generic underground facility (FAARM) ...

 Dialogos of Eide: Neutrinoless Double Beta DecayCOBRA · CUORICINO and CUORE · EXO · GERDA · MAJORANA · MOON · NEMO-3 and SuperNEMO · SNO+. See Also:Direct Dark Matter Detection.

Also From my research:

  1. Neutrinoless Double Beta Decay
  2. A first look at the Earth interior from the Gran Sasso underground laboratory
  3. Mysterious Behavior of Neutrinos sent Straight through the Earth
    *** 
     
ICECUBE Blog put up some links that I wanted to go through to see what is happening there. Their links provided at bottom of blog post here. Each link of theirs I have provided additional information in concert while I explore above.

Sunday, October 23, 2011

The Eternally Existing, Self-Reproducing, Frequently Puzzling Inflationary Universe

The Eternally Existing, Self-Reproducing, Frequently Puzzling Inflationary Universe

Since I cannot comment at Sean's Blog either,  I might as well comment here too:)

27.   Moshe Says:
Igor, I am not sure I understand. We have an initial value problem, so today’s observations are determined once you specify an initial state at some time in the distant past. If you specify the time to be the beginning of the big bang evolution, with the correct but very contrived initial state (nearly homogeneous with just the right kind of fluctuations) then you get no conflict with observation. By contruction, same applies to inflation, because it reproduces that initial state and all subsequent evolution. The only point of inflation is to make that initial state the outcome of prior evolution. By construction all current observations will then be identical, but the initial state will be more natural and less contrived. As I understand Sean’s statement, quantifying this intuitive notion of naturalness is tricky, and it is not always clear inflation indeed comes ahead. I hope I am not mangling things…
And, for the record, in my mind the notion of “naturalness” is one instance of “algorithmic compression”, which is the whole point of seeking a scientific explanation. Without invoking such criteria, by definition (for example) the particle data group review book would be always the best “theory” of particle physics, and you’d never need to learn about gauge theories and spontaneous symmetry breaking and all that stuff.

See Also:

Why Penrose is one of many crackpots when it comes to inflation

Saturday, October 22, 2011

CMS Physics Results

Link on Title.

  • All CMS public results can be found in CDS , and are categorized by subject (group) in this page.
  • Publications and preprints on collision data, ordered by time, are available at this link.
  • Publications on cosmic-ray data can be found here; the paper on muon charge ratio is available here .
  • The complete list of publications is here.
  • Preliminary results on collision data at 0.9, 2.36 and 7 TeV are described in Physics Analysis Summaries; Monte Carlo studies can be found here.
  • Public performance plots are shown in Detector Performance Summaries.

See Also:CMS Physics Analysis Summaries

Thursday, October 20, 2011

What is a Higgs Boson? Lepton fizz?



Fermilab scientist Don Lincoln describes the nature of the Higgs boson. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass

See:Why does anything have substance? Hunting the Higgs boson

*** 
 
A search for excited leptons is carried out with the CMS detector at the LHC, using
36 pb��1 of pp collision data recorded at ps = 7 TeV. The search is performed for associated
production of a lepton and an oppositely charged excited lepton pp ! `` ,
followed by the decay ` ! `g, resulting in the ``g final state, where ` = e, m. No
excess of events above the standard model expectation is observed. Interpreting the
findings in the context of ` production through four-fermion contact interactions and
subsequent decay via electroweak processes, first upper limits are reported for ` production
at this collision energy. The exclusion region in the compositeness scale L and
excited lepton mass M` parameter space is extended beyond previously established
limits. For L = M` , excited lepton masses are excluded below 1070 GeV/c2 for e
and 1090 GeV/c2 for m at the 95% confidence level.
See Also : Lepton fizz