Tuesday, October 18, 2011

Aspera

Home Site Located in Title


A European Network For Astroparticle Physics in Europe

ASPERA is a network of national government agencies responsible for coordinating and funding national research efforts in Astroparticle Physics



***

See Also: LAGUNA large neutrino observatory design moves forward

The Chicagoland Observatory for Underground Particle Physics (COUPP)

The Chicagoland Observatory for Underground Particle Physics (COUPP) collaboration looks for bubbles in chambers filled with a compound containing carbon, fluorine and iodine. The fluid is superheated beyond the boiling point but has no rough surface to form bubbles. When a specific type of particle interacts in the chamber, it can deposit enough energy to boil the fluid and make a bubble. Electrons do not produce bubbles, while a dark matter particle interacting with a nucleus can – making this the key for dark matter detection. See:Bubble chamber gets more precise in dark matter search

Bold added for emphasis.

See Also: Bubble chamber gets more precise in dark matter search

***

The accelerating universe is the observation that the universe appears to be expanding at an increasing rate, which in formal terms means that the cosmic scale factor a(t) has a positive second derivative,[1] implying that the velocity at which a given galaxy is receding from us should be continually increasing over time[2] (here the recession velocity is the same one that appears in Hubble's law; defining 'velocity' in cosmology is somewhat subtle, see Comoving distance#Uses of the proper distance for a discussion). In 1998, observations of type Ia supernovae suggested that the expansion of the universe has been accelerating[3][4] since around redshift of z~0.5.[5] The 2006 Shaw Prize in Astronomy and the 2011 Nobel Prize in Physics were both awarded to Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess for the 1998 discovery of the accelerating expansion of the Universe through observations of distant supernovae.[6][7]

***

In cosmology, baryon acoustic oscillations (BAO) refers to an overdensity or clustering of baryonic matter at certain length scales due to acoustic waves which propagated in the early universe.[1] In the same way that supernova experiments provide a "standard candle" for astronomical observations,[2] BAO matter clustering provides a "standard ruler" for length scale in cosmology.[1] The length of this standard ruler (~150 Mpc in today's universe[3]) can be measured by looking at the large scale structure of matter using astronomical surveys.[3] BAO measurements help cosmologists understand more about the nature of dark energy (the acceleration of the universe) by constraining cosmological parameters.[1]
***

SDSS III: 2008-2014

In mid-2008, SDSS-III was started. It comprises four separate surveys, each conducted on the same 2.5m telescope: [9][10]

Baryon Oscillation Spectroscopic Survey (BOSS)

The SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS) will map the spatial distribution of luminous red galaxies (LRGs) and quasars to detect the characteristic scale imprinted by baryon acoustic oscillations in the early universe. Sound waves that propagate in the early universe, like spreading ripples in a pond, imprint a characteristic scale on the positions of galaxies relative to each other [12] .

***
See Also:

        Saturday, October 15, 2011

        Particles that can hit the Earth's atmosphere at high speeds.


        Source: University of Chicago Library

        Enrico Fermi's notebook of December 1948 contains four pages that represent the genesis of his theory of cosmic rays, particles that can hit the Earth's atmosphere at high speeds. In these pages, he worked out the acceleration of cosmic rays due to a series of collisions with magnetic clouds moving through the universe, a process later named Fermi acceleration.SEE:Archive: Logbook

        ***


        Wednesday, October 12, 2011

        Seeing Underlying Structures

         There is  gap between,  "Proton Collision ->Decay to Muons and Muon Neutrinos ->Tau Neutrino ->[gap] tau lepton may travel some tens of microns before decaying back into neutrino and charged tracks." Use the case of Relativistic Muons?


         An analysis of four Fermi-detected gamma-ray bursts (GRBs) is given that sets upper limits on the energy dependence of the speed and dispersion of light across the universe. The analysis focuses on photons recorded above 1 GeV for Fermi detected GRB 080916C, GRB 090510A, GRB090902B, and GRB 090926A. Upper limits on time scales for statistically significant bunching of photon arrival times were found and cataloged. In particular, the most stringent limit was found for GRB 090510A at redshift z & 0.897 for which t < 0.00136 sec, a limit driven by three separate photon bunchings. These photons occurred among the first seven super-GeV photons recorded for GRB 090510A and contain one pair with an energy difference of E & 23.5 GeV. The next most limiting burst was GRB 090902B at a redshift of z & 1.822 for which t < 0.161, a limit driven by several groups of photons, one pair of which had an energy difference E & 1.56 GeV. Resulting limits on the differential speed of light and Lorentz invariance were found for all of these GRBs independently. The strongest limit was for GRB 090510A with c/c < 6.09 x 10−21. Given generic dispersion relations across the universe where the time delay is proportional to the photon energy to the first or second power, the most stringent limits on the dispersion strengths were k1 < 1.38 x 10−5 sec Gpc−1 GeV−1 and k2 < 3.04 x 10−7 sec Gpc−1 GeV−2 respectively. Such upper limits result in upper bounds on dispersive effects created, for example, by dark energy, dark matter or the spacetime foam of quantum gravity. Relating these dispersion constraints to loop quantum gravity
        energy scales specifically results in limits of M1c2 > 7.43 x 1021 GeV and M2c2 > 7.13 x 1011 GeV respectively. See: Limiting properties of light and the universe with high energy photons from Fermi-detected Gamma Ray Bursts


        The point here is that Energetic disposition of flight time and Fermi Calorimetry result point toward GRB emission and directly determination of GRB emission allocates potential of underlying structure W and the electron-neutrino fields?

        Fig. 3: An electron, as it travels, may become a more complex combination of disturbances in two or more fields. It occasionally is a mixture of disturbances in the photon and electron fields; more rarely it is a disturbance in the W and the electron-neutrino fields. See: Another Speed Bump for Superluminal Neutrinos Posted on October 11, 2011 at, "Of Particular Significance"
        ***
        What I find interesting is that Tamburini and Laveder do not stop at discussing the theoretical interpretation of the alleged superluminal motion, but put their hypothesis to the test by comparing known measurements of neutrino velocity on a graph, where the imaginary mass is computed from the momentum of neutrinos and the distance traveled in a dense medium. The data show a very linear behaviour, which may constitute an explanation of the Opera effect: See: Tamburini: Neutrinos Are Majorana Particles, Relativity Is OK


        See Also:

        Sunday, October 09, 2011

        The World as a Hologram

        UC Berkeley's Raphael Bousso presents a friendly introduction to the ideas behind the holographic principle, which may be very important in the hunt for a theory of quantum gravity. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series" [3/2006] [Science] [Show ID: 11140]

        Science vs. Spirituality: Deepak Chopra And Leonard Mlodinow Discuss 'War Of The Worldviews'

        Article linked in Title.



        The debate between science and spirituality is framed as a knock down fight for truth with winner take all. But does it have to be that way? Deepak Chopra is a physician and one of the most highly regarded spiritual teachers in the world; and Leonard Mlodinow teaches at Cal Tech and co-authored, along with Stephen Hawking, "The Grand Design." Chopra and Mlodinow wrote "War of the Worldviews: Science vs. Spirituality" to help start an intelligent and civil conversation about this very hot subject.

        In this hour long video, Deepak Chopra and Leonard Mlodinow debate science and spirituality moderated by Paul Brandeis Raushenbush, Senior Religion Editor for The Huffington Post. This conversation was streamed live on Oct. 4, 2011 on the date of the publication of "War of the Worldviews: Science vs. Spirituality" by Deepak Chopra and Leonard Mlodinow.

        ***

        Lee Smolin: "Here is a metaphor due to Eric Weinstein that I would have put in the book had I heard it before. Let us take a different twist on the landscape of theories and consider the landscape of possible ideas about post standard model or quantum gravity physics that have been proposed. Height is proportional to the number of things the theory gets right. Since we don’t have a convincing case for the right theory yet, that is a high peak somewhere off in the distance. The existing approaches are hills of various heights that may or may not be connected, across some ridges and high valleys to the real peak. We assume the landscape is covered by fog so we can’t see where the real peak is, we can only feel around and detect slopes and local maxima.

        See:

        Saturday, October 08, 2011

        Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

        A map of the Moon combining observations in visible and ultraviolet wavelengths shows a treasure trove of areas rich in Titanium ores. Not only is Titanium a valuable mineral, it is key to helping scientists unravel the mysteries of the Moon’s interior.  Mark Robinson and Brett Denevi will be presenting the results from the Lunar Reconnaissance Orbiter mission today at the joint meeting of the European Planetary Science Congress and the American Astronomical Society’s Division for Planetary Sciences. >EPSC-DPS JOINT MEETING 2011 PRESS NOTICE
        ISSUED 13:15 CEST ON FRIDAY 7TH OCTOBER
        Ref. PN: EPSC11/14
         

        It seems this Europlanet is a little bit behind the times. Check label below on Plato's Nightlight Mining Company. What more can I say?

        See Also: LROC “Treasure Map” Reveals Titanium Deposits

        Friday, October 07, 2011

        Cohen-Glashow Argument

        Bee:And for all I know you need a charge for Cherenkov radiation and neutrinos don't have one.



        Fig. 1: Cerenkov radiation involves the nearly continuous emission of photons by a charged particle moving faster than the speed of light in its vicinity. The charged particle gradually radiates away its energy. Cohen-Glashow emission involves the occasional creation, near a speeding neutrino, of an electron-positron pair, in which the neutrino loses a large fraction of its energy in one step.


        But these details almost don’t matter, because Cohen and Glashow then put another chunk of powerful evidence on the table. They point out that neutrinos have been observed, at two other experiments, SuperKamiokande and IceCube, 100 to 1000 times more energetic than the neutrinos in OPERA’s beam. These neutrinos come out of the earth having traveled many hundreds or thousands of kilometers across interior of the planet. The fact that these neutrinos did not lose most of their energy while traveling all that distance implies that they, too, did not undergo CG emission. In short, they must have traveled very close to, and conservatively no more than about fifteen parts per billion faster than, the speed of light in empty space. (The limit from IceCube data may be as good as ten parts per trillion!)See: Is the OPERA Speedy Neutrino Experiment Self-Contradictory?