Friday, May 07, 2010

Quark Gluon Plasma (QGP)

No matter what you call it, though, that substance and others similar to it could be the most-perfect fluids in existence because they have ultra-low viscosity, or resistance to flow, said Dam Thanh Son, an associate physics professor in the Institute for Nuclear Theory at the University of Washington.

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions - or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions - behaves as if it has a viscosity near zero, the lowest yet measured.

***
2. A quark-gluon plasma, with the same quarks, but with "bags" disappeared and gluons flying around in their place. SeeJust in case anyone forgot...
***
One of the things I worked a lot on in earlier months this year (and late ones of last year) was the lead article in a cluster of articles that has appeared in the last few days in May’s special edition of Physics Today. They are sort of departmental-colloquium-level articles, so for a general physics audience, more or less. It’s about some of the things I’ve told you about here in the past (see e.g. here and here), concerning exciting and interesting applications of string theory to various experiments in nuclear physics, as well as atomic and condensed matter physics (although we do not have an article on the latter in this cluster). I had a fun time working with Peter Steinberg on the article and remain grateful to him for getting us all together in the first place to talk about this topic way back in that AAAS symposium of 2009. It was there that Steven Blau of Physics Today got the excellent idea to approach us all to do an article, which resulted in this special issue....See: The Search For Perfection…

Clifford gives a link to the PDF version of the online article "What black holes teach about strongly coupled particles" I am not sure the article is free anymore as it now requires registry. Clifford has adjusted to this by giving "his" pdf link.



Cover: In contrast with everyday liquids such as the oil and water shown on the cover, a so-called perfect fluid has exceedingly low shear viscosity. But unlike a superfluid, the perfect fluid is not in a single quantum state. Three articles in this issue explore the connection to string theory (beginning on page 29) and the possible existence of perfect fluids in two very different regimes: ultracold fermionic atoms (page 34) and ultrahot nuclear matter (page 39). (Photo by Stefan Kaben.)


***

See Also:

Physics Bits and Bites

The quest for Quantum Ideal liquids

Sunday, May 02, 2010

Who Has Forgotten the Child's Question?

Physicists theorize that the omnipresent Higgs field slows some particles to below light speed, and thus imbues them with mass. Are we there yet?


How many of you with children have not heard our own children speak with impatience of wanting to be "there" and having to sit a long time before this is even possible?

Well, can you imagine the patience it took to materialize the experiments at Cern, in asking fundamental question about nature? It took a lot of patience and careful planning. There is no doubt about this.

I would also ask that those that visit this blog examine the picture below, as to the nature of "First Principle," in terms of computerized data, so that you understand this in context of an algorithm written, it is but the very essence of how something could have arisen in nature, had to be written into the "data accumulation" in order for us to recognize what is at the frontier of this experiment/knowledge in question.

The question of symmetry placed in this idea of computerized data, raises the idea of the types of formations that we will used to describe data gathered by Fermi as a descriptor of cosmos events in their unfolding.




Are we there yet?

Source of Q&A from linked article above.




Q&A with the Universe


From the quest for the most fundamental particles of matter to the mysteries of dark matter, supersymmetry, and extra dimensions, many of nature’s greatest puzzles are being probed at the Large Hadron Collider.



What is the form of the universe?

Physicists created the Standard Model to explain the form of the universe—the fundamental particles, their properties, and the forces that govern them. The predictions of this tried-and-true model have repeatedly proven accurate over the
years. However, there are still questions left unanswered. For this reason, physicists have theorized many possible extensions to the Standard Model. Several of these predict that at higher collision energies, like those at the LHC, we will
encounter new particles like the Z', pronounced " Z prime." It is a theoretical heavy boson whose discovery could be useful in developing new physics models. Depending on when and how we find a Z' boson, we will be able to draw more conclusions about the models it supports, whether they involve superstrings, extra dimensions, or a grand unified theory that explains everything in the universe. Whatever physicists discover beyond the Standard Model will open new frontiers for exploring the nature of the universe.
spacer

What is the universe made of?

Since the 1930s, scientists have been aware that the universe contains more than just regular matter. In fact, only a little over 4 percent of the universe is made of the matter that we can see.Of the remaining 96 percent, about 23 percent is dark matter and everything else is dark energy, a mysterious substance that creates a gravitational repulsion responsible for the universe’s accelerating expansion. One theory regarding dark matter is that it is made up of the as-yet-unseen partners of the particles that make up regular matter. In a supersymmetric universe, every ordinary particle has one of these superpartners. Experiments at the LHC may find evidence to support or reject their existence.


Are there extra dimensions?

We experience three dime nsions of space. However, the theory of relativity states that spacecan expand, contract, and bend. It’s possible, therefore, that we encounter only three spatial dimensions because they’re the only ones our size enables us to see, while other dimensions are so tiny that they are effectively hidden. Extra dimensions are integral to several theoretical models of the universe; string theory, for example, suggests as many as seven extra dimensions of space. The LHC is sensitive enough to detect extra dimensions ten billion times smaller than an atom. Experiments like ATLAS and CMS are hoping to gather information about how many other dimensions exist, what particles are associated with them, and how they are hidden.

spacer

What are the most basic building blocks of matter?


Particle physicists hope to explain the makeup of the universe by understanding it from its smallest, most basic parts. Today, the fundamental building blocks of the universe are believed to be quarks and leptons; however, some theorists believe that these particles are not fundamental after all. The theory of compositeness, for example, suggests that quarks are composed of even smaller particles. Efforts to look closely at quarks and leptons have been difficult. Quarks are especially challenging, as they are never found in isolation but instead join with other particles to form hadrons, such as the protons that collide in the LHC. With the LHC’s high energy levels, scientists hope to collect enough data about quarks to reveal whether anything smaller is hidden inside.

Why do some particles have mass?


Through the theory of relativity, we know that particles moving at the speed of light have no mass, while particles moving slower than light speed do have mass. Physicists theorize that the omnipresent Higgs field slows some particles to below light speed, and thus imbues them with mass. We can’t study the Higgs field directly, but it is possible that an accelerator could excite this field enough to "shake loose" Higgs boson particles, which physicists should be able to detect. After decades of searching, physicists believe that they are close to producing collisions at the energy level needed to detect Higgs bosons.

Saturday, May 01, 2010

Boundaries are what divide us

Change your thoughts and you change your world. Norman Vincent Peale

The words seem a wise choice.

This is not to support the religious right, or left,  nor to induce fear(contentions of Peale in the article,) but to support the idea of thoughts actually changing the ownership of the property we have paid for when we come to our conclusions.  What is the cost(belief) and one comes quickly to realizing the outcome has been provided for.

Tuesday, April 27, 2010

Intelligent Life in the Universe?

While Drake's equation is a good basis for systematic investigations of signals from extraterrestrial intelligences, I care little about the admittedly scarce possibility that we ever receive positive news from our SETI searches. I care more about the fact that, if we consider the whole universe instead than restricting to our small galaxy, and if we omit to require that other civilizations exist at present (whatever this means over billion-light-year distance scales), the probability becomes a certainty.Tommaso Dorigo


I was over at Tommaso Dorigo's Blog, Quantum Diaries Survivor" reading his take on Extraterrestrials: A Dime A Dozen and the opening with Stephen Hawkings Lecture. I cut out the section of my interest as well to see what Dr. Hawking was talking about, besides reading Tommaso's take.

Qualitatively, I have come to realize,  given the framework for consideration of such possibilities,  these equations mean an inductive/deductive self evident constraint  how are we ever to consider the possibility( You have to give yourself permission to entertain).

I mean can we ever know the framework of that Extraterrestrial Intelligence given the parameters for our own belief structures? We do not even know what is possible "not having the framework" to properly question how this can be so?

So what I found in Dr.Hawkings lecture was the generalities of consensus across the industry of science and no new ways in which to possibly perceive the" right questions concerning the framework for possible new intelligences" that we would perceive as Extraterrestrials.

***

NASA's 50th Anniversary Lecture By Professor Stephen Hawking


...........DR. HAWKING: What will we find when we go into space? Is there alien life out there, or are we alone in the universe?
We believe that life arose spontaneously on the Earth. So it must be possible for life to appear on othersuitable planets, of which there seem to be a large number in the galaxy.

But we don't know how life first appeared. The probability of something as complicated as a DNA molecule being formed by random collisions of atoms in ocean is incredibly small. However, there might have been some simpler macro molecule which can build up the DNA or some other macro molecule capable of reproducing itself. Still, even if the probability of life appearing on a suitable planet is very small, since the universe is infinite, life would have appeared somewhere. If the probability is very low, the distance between two independent occurrences of life would be very large.

However, there is a possibility known as panspermia that life could spread from planet to planet or from stellar system to stellar system carried on meteors. We know that Earth has been hit by meteors that came from Mars, and others may have come from further afield. We have no evidence that any meteors carried life, but it remains a possibility.

An important feature of life spread by panspermia is that it would have the same basis which would be DNA for life in the neighborhood of the Earth.
On the other hand, an independent occurrence of life would be extremely unlikely to be DNA based. So watch out if you meet an alien. You could be infected with a disease against which you have no resistance.

One piece of observational evidence on the probability of life appearing is that we have fossils from 3.5 billion years ago. The Earth was formed 4.6 billion years ago and was probably too hot for about the first half billion years. So life appeared on Earth within half-a-billion years of it being possible, which is short compared to the 10-billion-year lifetime of an Earth-like planet.

This would suggest either panspermia or that the probability of life appearing independently is reasonably high. If it was very low, one would have expected it to take most of the 10 billion years available. If it is panspermia, any life in the solar system or in nearby stellar systems will also be DNA based.

While there may be primitive life in another region of the galaxy, there don't seem to be any advanced intelligent beings. We don't appear to have been visited by aliens. I am discounting reports of UFOs. Why would they appear only to cranks and weirdos?

[Laughter.]

DR. HAWKING: If there is a government conspiracy to suppress the reports and keep for itself the scientific knowledge the aliens bring, it seems to have been a singularly ineffective policy so far.

Furthermore, despite an extensive search by the SETI project, we haven't heard any alien television quiz shows. This probably indicates that there are no alien civilizations at our stage of development within the radius of a few hundred lightyears. Issuing an insurance policy against abduction by aliens seems a pretty safe bet.

Why haven't we heard from anyone out there? One view is expressed in this Calvin cartoon. The caption reads: "Sometimes I think that the surest sign that intelligent life exists elsewhere in the universe is that none of it has tried to contact us."
More seriously, there could be three possible explanations of why we haven't heard from aliens. First, it may be that the probability of primitive life appearing on a suitable planet is very low.

Second, the probability of primitive life appearing may be reasonably high, but the probability of that life developing intelligence like ours may be very low. Just because evolution led to intelligence in our case, we shouldn't assume that intelligence is an inevitable consequence of Darwinian natural selection.

It is not clear that intelligence confers a long-term survival advantage. Bacteria and insects will survive quite happily even if our so-called intelligence leads us to destroy ourselves.

This is the third possibility. Life appears and in some cases develops into intelligent beings, but when it reaches a stage of sending radio signals, it will also have the technology to make nuclear bombs and other weapons of mass destruction. It will, therefore, be in danger of destroying itself before long.

Let's hope this is not the reason we have not heard from anyone. Personally, I favor the second possibility that primitive life is relatively common, but that intelligent life is very rare. Some would say it has yet to occur on Earth.

[Laughter.]
DR. HAWKING: Can we exist for a long time away from the Earth? Our experience with the ISS, the International Space Station, shows that it is possible for human beings to survive for many months away from Planet Earth. However, the zero gravity aboard it causes a number of undesirable physiological changes and weakening of the bones, as well as creating practical problems with liquids, et cetera.

One would, therefore, want any long-term base for human beings to be on a planet or moon. By digging into the surface, one would get thermal insulation and protection from meteors and cosmic rays. The planet or moon could also serve as a source of the raw materials that would be needed if the extraterrestrial community was to be self-sustaining independently of Earth.


What are the possible sites of a human colony in the solar system? The most obvious is the Moon. It is close by and relatively easy to reach. We have already landed on it and driven across it in a buggy.

On the other hand, the Moon is small and without atmosphere or a magnetic field to deflect the solar radiation particles, like on Earth. There is no liquid water, but there may be ice in the craters at the north and south poles. A colony on the Moon could use this as a source of oxygen with power provided by nuclear energy or solar panels. The Moon could be a base for travel to the rest of the solar system.

Mars is the obvious next target. It is half as far, again, as the Earth from the Sun and so receives half the warmth. It once had a magnetic field, but it decayed 4 billion years ago, leaving Mars without protection from solar radiation. It stripped Mars of most of its atmosphere, leaving it with only 1 percent of the pressure of the Earth's atmosphere.

However, the pressure must have been higher in the past because we see what appear to be runoff channels and dried-up lakes. Liquid water cannot exist on Mars now.

It would vaporize in the near-vacuum. This suggests that Mars had a warm wet period during which life might have appeared either spontaneously or through panspermia. There is no sign of life on Mars now, but if we found evidence that life had once existed, it would indicate that the probability of life developing on a suitable planet was fairly high.

NASA has sent a large number of spacecraft to Mars, starting with Mariner 4 in 1964. It has surveyed the planet with a number of orbiters, the latest being the Mars Reconnaissance Orbiter. These orbiters have revealed deep gullies and the highest mountains in the solar system.

NASA has also landed a number of probes on the surface of Mars, most recently the two Mars Rovers. These have sent back pictures of a dry desert landscape. However, there is a large quantity of water in the form of ice in the polar regions. A colony on Mars could use this as a source of oxygen.

There has been volcanic activity on Mars. This would have brought minerals and metals to the surface which a colony could use.

The Moon and Mars are the most suitable sites for space colonies in the solar system. Mercury and Venus are too hot, while Jupiter and Saturn are gas giants with no solid surface.

The moons of Mars are very small and have no advantages over Mars itself.
Some of the moons of Jupiter and Saturn might be possible. In particular, Titan, a moon of Saturn, is larger and more massive than other moons and has a dense atmosphere.

The Cassini-Huygens Mission of NASA and ESA has landed a probe on Titan which has sent back pictures of the surface. However, it is very cold, being so far from the sun, and I wouldn't fancy living next to a lake of liquid methane.

What about beyond the solar system? Our observations indicate that a significant fraction of stars have planets around them. So far, we can detect only giant planets like Jupiter and Saturn, but it is reasonable to assume that they will be accompanied by smaller Earth-like planets. Some of these will lay in the [inaudible] zone where the distance from the stars is the right range for liquid water to exist on their surface.
There are around a thousand stars within 30 lightyears of Earth. If 1 percent of each had Earth-size planets in the [inaudible] zone, we would have 10 candidate new worlds. We can revisit it with current technology, but we should make interstellar a long-term aim. By long term, I mean over the next 200 to 500 years. The human race has existed as a separate species for about 2 million years.

Civilization began about 10,000 years ago, and the rate of development has been steadily increasing.

If the human race is to continue for another million years, we will have to boldly go where no one has gone before.

***

This same perspective about which I have involved myself with the issues of gravity has been at the forefront of my journey with regards to understanding gravity, and what we have come to know of it on Earth, is that it is not as it is in heaven?:)

Thoughts have this forming effect too, and in the world of Physical constants, how are such thoughts to be measured? "Particulate expressions" in such reductionist modes which lead to a inductive/deductive self evidential state of a ever forming Higg's field?? What thought has traversed the room, to arrive on the other side of the room with consensus?

Not as if, we can defy it's hold on us, while taking plane flights to experience this sensation of dropping fast to earth and leaving ourselves suspended for a time. That it is a consensus borne in mind that such an idea is limited to the framework for which all ideas about it are limited too.

The net result is that the meager N=2.1 becomes over 20 trillions! This means that there are presently 20 trillion civilizations around. 20 trillions. Okay, we might have dropped or added one factor of a hundred too many here or there, but the number is still enormous, no escape!

Is that not a sobering thought ? To me, that is both awesome and saddening. As far as awe is concerned, of course there is no need to explain it. But there is sadness too: for imagine the incredible, unfathomable number of things that we will never be able to know, constrained in our tiny planet, during our insignificant lives. Masterpieces, inventions, acts of bravery, adventures. But also wars, atrocities, catastrophes. The history of the universe will never be written - but it would be quite a read, I am sure.
Tommaso Dorigo


So as with the idea of Intelligences in the universe, I place gravity along side of it, as in the context of formulating the right questions. In Tommaso's blog the entry is the deciphering in context of the Drake Equation yet not bound by it in belief. This does not make Tommaso irresponsible to me in shirking the basis of that determination by using the equation.

So of course along the way in my endeavors with those who I have conversed, or left trail bytes for consideration, is the idea that the world as we see it is not always as it seems and that by consensus, the framework is establish is one which limits our views according too.

A "synopsis of the events" can lead us too, and as has been extrapolated according to the world of science. The thoughts that are left to me have been the idea of how scientists can ever introduce new formulations outside of that structure consensus without first taking a new baby step(how so?). They have had to all come to agreement on the latest version of that consensus.

Then there are, the Physical Constants. It is as if in relation to the formulation to a mathematical consistency as a correlative function of the Drake equation in the process of.

This does not mean we sanction irresponsibility to the quest of discovering new worlds of thought, be it in context of Extraterrestrial Intelligences, or even about gravity and the quantum world in which it shall work.

I still visit those scientists who have placed "Outreach" even amidst the data and scientific endeavors they are pursuing. I look for the glimmer of hope that such baby steps are borne out of such minds.

Having defined all the parameters of your science what would be the next question that would lead you to new insights? What new science beyond the experiments that you are working on?

Saturday, April 24, 2010

FLOW


oscopelabs July 29, 2008 Irena Salina's award-winning documentary investigation into what experts label the most important political and environmental issue of the 21st Century - The World Water Crisis.

Salina builds a case against the growing privatization of the world's dwindling fresh water supply with an unflinching focus on politics, pollution, human rights, and the emergence of a domineering world water cartel.

Interviews with scientists and activists intelligently reveal the rapidly building crisis, at both the global and human scale, and the film introduces many of the governmental and corporate culprits behind the water grab, while begging the question 'CAN ANYONE REALLY OWN WATER?'

Beyond identifying the problem, FLOW also gives viewers a look at the people and institutions providing practical solutions to the water crisis and those developing new technologies, which are fast becoming blueprints for a successful global and economic turnaround.

IN THEATERS:
Sept. 12
New York - Angelika Film Center
Los Angeles - Laemmle Sunset 5
See: F.L.O.W - For Love of Water

Friday, April 23, 2010

Solar Dynamics Observatory


SpaceCraft
  • The total mass of SDO at launch was 3000 kg (6620 lb); instruments 300 kg (660 lb), spacecraft 1300 kg (2870 lb), and fuel 1400 kg (3090 lb).
  • Its overall length along the sun-pointing axis is 4.5 m, and each side is 2.22 m.
  • The span of the extended solar panels is 6.25 m.
  • Total available power is 1500 W from 6.6 m2 of solar arrays operating at an efficiency of 16%
  • The high-gain antennas rotate once each orbit to follow the Earth.


***
April 21, 2010: Warning, the images you are about to see could take your breath away.
At a press conference today in Washington DC, researchers unveiled "First Light" images from NASA's Solar Dynamics Observatory, a space telescope designed to study the sun.


"SDO is working beautifully," reports project scientist Dean Pesnell of the Goddard Space Flight Center. "This is even better than we could have dreamed."


Launched on February 11th from Cape Canaveral, the observatory has spent the past two months moving into a geosynchronous orbit and activating its instruments. As soon as SDO's telescope doors opened, the spacecraft began beaming back scenes so beautiful and puzzlingly complex that even seasoned observers were stunned.
Source for story here


***
NASA's New Eye on the Sun Delivers Stunning First Images
04.21.10
View related briefing materials here.

NASA's recently launched Solar Dynamics Observatory, or SDO, is returning early images that confirm an unprecedented new capability for scientists to better understand our sun’s dynamic processes. These solar activities affect everything on Earth.

Some of the images from the spacecraft show never-before-seen detail of material streaming outward and away from sunspots. Others show extreme close-ups of activity on the sun’s surface. The spacecraft also has made the first high-resolution measurements of solar flares in a broad range of extreme ultraviolet wavelengths.

"These initial images show a dynamic sun that I had never seen in more than 40 years of solar research,” said Richard Fisher, director of the Heliophysics Division at NASA Headquarters in Washington. "SDO will change our understanding of the sun and its processes, which affect our lives and society. This mission will have a huge impact on science, similar to the impact of the Hubble Space Telescope on modern astrophysics.”




(From NASA:) A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA
(From NASA:) A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA

Source of Picture is taken from here

Monday, March 29, 2010

Linking Experiments

Illustration: Sandbox Studio

 

The first round of physics

Nine proposals are under consideration for the initial suite of physics experiments at DUSEL, and scientists have received $21 million in NSF funding to refine them. The proposals cover four areas of research:
  • What is the nature of dark matter? (Proposals for LZ3, COUPP, GEODM, and MAX)
  • Are neutrinos their own antiparticles? (Majorana, EXO)
  • How do stars create the heavy elements? (DIANA)
  • What role did neutrinos play in the evolution of the universe? (LBNE)
In addition, scientists propose to build a generic underground facility (FAARM) that will monitor the mine's naturally occurring radioactivity, which can interfere with the search for dark matter. The facility also would measure particle emissions from various materials, and help develop and refine technologies for future underground physics experiments.
But why are there four separate proposals for how to search for dark matter? Not knowing the nature of dark-matter particles and their interactions with ordinary matter, scientists would like to use a variety of detector materials to look for the particles and study their interactions with atoms of different sizes. The use of different technologies would also provide an independent cross check of the experimental results.
"We strongly feel we need two or more experiments," says Bernard Sadoulet of UC Berkeley, an expert on dark-matter searches. "If money were not an issue, you would build at least three experiments."
The largest experiment intended for DUSEL is the Long-Baseline Neutrino Experiment (see graphic), a project that involves both the DOE and NSF. Scientists would use the LBNE to explore whether neutrinos break one of the most fundamental laws of physics: the symmetry between matter and antimatter. In 1980, James Cronin and Val Fitch received the Nobel Prize for the observation that quarks can violate this symmetry. But the effect is too small to explain the dominance of matter over antimatter in our universe. Neutrinos might be the answer.
The LBNE scientists would generate a high-intensity neutrino beam at DOE's Fermi National Accelerator Laboratory, 800 miles east of Homestake, and aim it straight through the Earth at two or more enormous neutrino detectors in the DUSEL mine, each containing the equivalent of 100,000 tons of water.
Studies have shown that the rock at the 4850-foot level of the mine would support the safe construction of these caverns. In January, the LBNE experiment received first-stage approval, also known as Mission Need, from the DOE.
Lesko and his team now are combining all engineering studies and science proposals into an overall proposal for review.
"By the end of this summer, we hope to complete a preliminary design of the DUSEL facility and then integrate it with a generic suite of experiments," Lesko says. "While formal selection of the experiments will not have been made by that time, we know enough about them now that we can move forward with the preliminary design. The experiments themselves will be selected through a peer-review process, as is common in the NSF."
If all goes well, Lesko says, scientists and engineers could break ground on the major DUSEL excavations in 2013, marking the start of a new era for deep underground research in the United States. SEE:Big Plans for Deep Science

See Also: 

Thursday, March 25, 2010

Mapping the Internet Brain and Consciousness

Partial map of the Internet based on the January 15, 2005 data found on opte.org. Each line is drawn between two nodes, representing two IP addresses. The length of the lines are indicative of the delay between those two nodes. This graph represents less than 30% of the Class C networks reachable by the data collection program in early 2005. Lines are color-coded according to their corresponding RFC 1918 allocation as follows:
  • Dark blue: net, ca, us
  • Green: com, org
  • Red: mil, gov, edu
  • Yellow: jp, cn, tw, au, de
  • Magenta: uk, it, pl, fr
  • Gold: br, kr, nl
  • White: unknown

I asked a couple of my work mates what they thought this picture was, and right away they thought it was some galaxy. On first look it did not seem any less likely to me either,  until that is of course you have  a read through the design construction listed underneath the picture.


What are Mind Maps?
A mind map is a diagram used to represent words, ideas, tasks, or other items linked to and arranged around a central key word or idea. Mind maps are used to generate, visualize, structure, and classify ideas, and as an aid in study, organization, problem solving, decision making, and writing.

The elements of a given mind map are arranged intuitively according to the importance of the concepts, and are classified into groupings, branches, or areas, with the goal of representing semantic or other connections between portions of information. Mind maps may also aid recall of existing memories.
By presenting ideas in a radial, graphical, non-linear manner, mind maps encourage a brainstorming approach to planning and organizational tasks. Though the branches of a mindmap represent hierarchical tree structures, their radial arrangement disrupts the prioritizing of concepts typically associated with hierarchies presented with more linear visual cues. This orientation towards brainstorming encourages users to enumerate and connect concepts without a tendency to begin within a particular conceptual framework.
The mind map can be contrasted with the similar idea of concept mapping. The former is based on radial hierarchies and tree structures denoting relationships with a central governing concept, whereas concept maps are based on connections between concepts in more diverse patterns.
This is amazing to me in context of mind mapping that is spoken too here on this site.  I thought it appropriate to title the Post above in context of how we are mapping the human brain in terms of neurological connections so as to see this comparative relation to how we might map the internet.

See:Creating a Science of the Web

The Web is the largest human information construct in history. The Web is transforming society. In order to...understand what the Web is engineer its future ensure its social benefit

...we need a new interdisciplinary field that we call Web Science.

The Web Science Research Initiative brings together academics, scientists, sociologists, entrepreneurs and decision makers from around the world. These people will create the first multidisciplinary research body to examine the World Wide Web and offer the practical solutions needed to help guide its future use and design.

As you go through the label on mind map you will discover something about mind mapping  as I have written about it that I see is inherent in the very nature of our makeup. To me this was to be revealed through the quieter times of my introspection, that one might say I was indeed asleep and dreaming.

A contemporary mandala made from a photograph of tree fungi.See:Mandala

So in a way this product of my introspection was about understanding that such structures were immortal in my view that these could be transmitted in consciousness from a time before our birth to have it exploded within our consciousness, as the life began to unfold for us.

That such parcels of thought were given in this context and formed to allow a time for thought to be expelled from the very understanding that this was somehow "a seed to germinate," the longer one thought about it's structure and content.

So too that we could as if natural consequence see that the way the subconscious mind was to organize a "load of information" so as to keep these things in the souls memory for all time. This was the idea that all life experience around us was able to form this distillate view as a function seen in any kaleidescope image, as it is fractionated down to it's simplest form .

See Also :



Monday, March 22, 2010

A first look at the Earth interior from the Gran Sasso underground laboratory

The Gran Sasso National Laboratory (LNGS) is one of four INFN national laboratories.
It is the largest underground laboratory in the world for experiments in particle physics, particle astrophysics and nuclear astrophysics. It is used as a worldwide facility by scientists, presently 750 in number, from 22 different countries, working at about 15 experiments in their different phases.

It is located between the towns of L'Aquila and Teramo, about 120 km from Rome
.
The underground facilities are located on a side of the ten kilometres long freeway tunnel crossing the Gran Sasso Mountain. They consist of three large experimental halls, each about 100 m long, 20 m wide and 18 m high and service tunnels, for a total volume of about 180,000 cubic metres.
***
Slide by Takaaki Kajita
In June 1998 the Super-Kamiokande collaboration revealed its eagerly anticipated results on neutrino interactions to 400 physicists at the Neutrino ’98 conference in Takayama, Japan. A hearty round of applause marked the end of a memorable presentation by Takaaki Kajita of the University of Tokyo that included this slide. He presented strong evidence that neutrinos behave differently than predicted by the Standard Model of particles: The three known types of neutrinos apparently transform into each other, a phenomenon known as oscillation.

Super-K’s detector, located 1000 meters underground, had collected data on neutrinos produced by a steady stream of cosmic rays hitting the Earth’s atmosphere. The data allowed scientists to distinguish between two types of atmospheric neutrinos: those that produce an electron when interacting with matter (e-like), and those that produce a muon (μ-like). The graph in this slide shows the direction the neutrinos came from (represented by cos theta, on the x-axis); the number of neutrinos observed (points marked with crosses); and the number expected according to the Standard Model (shaded boxes).

In the case of the μ-like neutrinos, the number coming straight down from the sky into the detector agreed well with theoretical prediction. But the number coming up through the ground was much lower than anticipated. These neutrinos, which originated in the atmosphere on the opposite side of the globe, travelled 13,000 kilometers through the Earth before reaching the detector. The long journey gave a significant fraction of them enough time to “disappear”—shedding their μ-like appearance by oscillating into a different type of neutrino. While earlier experiments had pointed to the possibility of neutrino oscillations, the disappearance of μ-like neutrinos in the Super-K experiment provided solid evidence.
***
Click on this BlogTitled link



The Borexino Collaboration announced the observation of geo-neutrinos at the underground Gran Sasso National Laboratory of Italian Institute for Nuclear Physics (INFN), Italy. The data reveal, for the first time, a definite anti-neutrino signal with the expected energy spectrum due to radioactive decays of U and Th in the Earth well above background.

The International Borexino Collaboration, with institutions from Italy, US, Germany, Russia, Poland and France, operates a 300-ton liquid-scintillator detector designed to observe and study low-energy solar neutrinos. The low background of the Borexino detector has been key to the detection of geo-neutrinos. Technologies developed by Borexino Collaborators have achieved very low background levels. The central core of the Borexino scintillator is now the lowest background detector available for these observations. The ultra-low background of Borexino was developed to make the first measurements of solar neutrinos below 1 MeV and has now produced this first, firm observation of geo-neutrinos.

Geo-neutrinos are anti-neutrinos produced in radioactive decays of naturally occurring Uranium, Thorium, Potassium, and Rubidium. Decays from these radioactive elements are believed to contribute a significant but unknown fraction of the heat generated inside our planet. The heat generates convective movements in the Earth's mantle that influence volcanic activity and tectonic plate movements inducing seismic activity, and the geo-dynamo that creates the Earth's magnetic field.
More above......

***
Links borrowed from here

Browsing experiments
 • auger (7 photos)
 • borexino (6 photos)
 • cobra (6 photos)
 • cresst (5 photos)
 • cryostem (2 photos)
 • cuore (5 photos)
 • cuoricino (3 photos)
 • dama (9 photos)
 • eastop (4 photos)
 • ermes (2 photos)
 • genius (3 photos)
 • gerda (1 photos)
 • gigs (3 photos)
 • gno (6 photos)
 • hdms (2 photos)
 • hmbb (1 photos)
 • icarus (19 photos)
 • lisa (1 photos)
 • luna (5 photos)
 • lvd (4 photos)
 • macro (4 photos)
 • mibeta (1 photos)
 • opera (26 photos)
 • tellus (1 photos)
 • underseis (8 photos)
 • vip (1 photos)
 • warp (10 photos)
 • xenon (4 photos)
 • zoo (3 photos)


*** 
See Also:

The Law of Octaves


Dmitri Ivanovich Mendeleev (also romanized Mendeleyev or Mendeleef; Russian: Дми́трий Ива́нович Менделе́ев About this sound listen ) (8 February [O.S. 27 January] 1834 – 2 February [O.S. 20 January] 1907), was a Russian chemist and inventor. He is credited as being the creator of the first version of the periodic table of elements. Using the table, he predicted the properties of elements yet to be discovered.

This post was inspired by the "Poll: Do you believe in extraterrestrial life?"

I was thinking about Hoyle and CNO and of course about Lee Smolin. As you get older it is harder for me to retain all that proceeded each discussion, so linking helps to refresh.

Carbon is the 15th most abundant element in the Earth's crust, and the fourth most abundant element in the universe by mass after hydrogen, helium, and oxygen. It is present in all known lifeforms, and in the human body carbon is the second most abundant element by mass (about 18.5%) after oxygen.[14] This abundance, together with the unique diversity of organic compounds and their unusual polymer-forming ability at the temperatures commonly encountered on Earth, make this element the chemical basis of all known life.See:Carbon

It was necessary to recall the links from one to the other, to show how one's perception "about Carbon was drawn" into the discussion about what life in the cosmos is based on.



I am partial to the allotropic expression on a physical scale by something that was understood as the Law of Octaves.

Carbon forms the backbone of biology for all life on Earth. Complex molecules are made up of carbon bonded with other elements, especially oxygen, hydrogen and nitrogen. It is these elements that living organisms need, among others, and carbon is able to bond with all of these because of its four valence electrons. Since no life has been observed that is not carbon-based, it is sometimes assumed in astrobiology that life elsewhere in the universe will also be carbon-based. This assumption is referred to by critics as carbon chauvinism, as it may be possible for life to form that is not based on carbon, even though it has never been observed.See:Carbon-based life


For sure each round of discussion on the topic leads too... and there are ideas with which one can ask.  I am in no way advocating anything here in terms of AP other then to remember discussions about this very poll question before.  

The triple alpha process is highly dependent on carbon-12 having a resonance with the same energy as helium-4 and beryllium-8 and before 1952 no such energy level was known. It was astrophysicist Fred Hoyle who used the fact that carbon-12 is so abundant in the universe (and that our existence depends upon it - the Anthropic Principle), as evidence for the existence of the carbon-12 resonance. Fred suggested the idea to nuclear physicist Willy Fowler, who conceded that it was possible that this energy level had been missed in previous work on carbon-12. After a brief undertaking by his research group, they discovered a resonance near to 7.65 Mev.See:Triple-alpha process

*** 
 

Mass spectrometers are analytical instruments that determine atomic and molecular masses with great accuracy. Low-pressure vapors of elements or molecules are hit by a beam of rapidly moving electrons. The collision knocks an electron off the sample atom or molecule, leaving it positively charged.
These newly-formed ions are accelerated out of the ionization chamber by an electric field. The speeds to which the ions can be accelerated by the electric field are determined by their masses. Lighter ions can go faster than heavier ones.


Ion's path bent by external magnetic field
Ion's path bent by external magnetic field
Courtesy: McREL
The beam of positively-charged ions generates a slight magnetic field that interacts with an externally-applied magnetic field. The net result is that the trajectory of a charged particle is curved to an extent that depends on its speed (determined by its mass). When the beam of a mixture of isotopes of different masses falls on a photographic plate, the different isotopes converge at different points, corresponding to the different radii of their semicircular paths.
The mathematical equation that describes this phenomenon is: m/e = H2 r2 /2V, where m is the mass of the ion, e is the charge of the ion, H is the magnetic field strength, r is the radius of the semicircle, and V is the accelerating potential.
***
See Also: