What good is a universe without somebody around to look at it?
Robert Dicke
John Archibald Wheeler (born July 9, 1911) is an eminent American theoretical physicist. One of the later collaborators of Albert Einstein, he tried to achieve Einstein's vision of a unified field theory. He is also known as the coiner of the popular name of the well known space phenomenon, the black hole.
There is always somebody who is the teacher and from them, their is a progeny. It would not be right not to mention John Archibald Wheeler. Or not to mention some of his students.
Notable students
Demetrios Christodoulou
Richard Feynman
Jacob Bekenstein
Robert Geroch
Bei-Lok Hu
John R. Klauder
Charles Misner
Milton Plesset
Kip Thorne
Arthur Wightman
Hugh Everett
Bill Unruh
COSMIC SEARCH: How did you come up with the name "black hole"?
John Archibald Wheeler:It was an act of desperation, to force people to believe in it. It was in 1968, at the time of the discussion of whether pulsars were related to neutron stars or to these completely collapsed objects. I wanted a way of emphasizing that these objects were real. Thus, the name "black hole".
The Russians used the term frozen star—their point of attention was how it looked from the outside, where the material moves much more slowly until it comes to a horizon.* (*Or critical distance. From inside this distance there is no escape.) But, from the point of view of someone who's on the material itself, falling in, there's nothing special about the horizon. He keeps on going in. There's nothing frozen about what happens to him. So, I felt that that aspect of it needed more emphasis.
It is important to me to understand some of the history of the Blackhole, and the students who went on to develop the very ideas around them. To see how they interconnect at one time or another, to provide for the very insights from such gatherings.
Stephen Hawking’s says:
“Roger Penrose and I worked together on the large scale structure of space and time, including singularities and black holes. We pretty much agree on the classical theory of theory of relativity but disagreements began to emerge when we got into quantum gravity. We now have different approaches to the world, physical and mental. Basically, he is a Platonist believing that’s there’s a unique world of ideas that describes a unique physical reality. I on the other hand, am a positivist who believes that physical theories are just mathematical models we construct, and it is meaningless to ask if they correspond to reality; just whether they predict observations.”See: Phil Warnell's comment.
( Chapter Six-The Large, the Small and the Human Mind-Roger Penrose-Cambridge University Press-1997)
Black hole information paradox
Whereas Stephen Hawking and Kip Thorne firmly believe that information swallowed by a black hole is forever hidden from the outside universe, and can never be revealed even as the black hole evaporates and completely disappears,
And whereas John Preskill firmly believes that a mechanism for the information to be released by the evaporating black hole must and will be found in the correct theory of quantum gravity,
Therefore Preskill offers, and Hawking/Thorne accept, a wager that:
When an initial pure quantum state undergoes gravitational collapse to form a black hole, the final state at the end of black hole evaporation will always be a pure quantum state.
The loser(s) will reward the winner(s) with an encyclopedia of the winner's choice, from which information can be recovered at will.
Stephen W. Hawking, Kip S. Thorne, John P. Preskill
Pasadena, California, 6 February 1997
Drawing Credit: XMM-Newton, ESA, NASA-Image sourced from: Pictured above is an artist's illustration of a black hole surrounded by an accretion disk.
The black hole Information Paradox results from the combination of quantum mechanics and general relativity. It suggests that physical information could "disappear" in a black hole. It is a contentious subject since it violates a commonly assumed tenet of science—that information cannot be destroyed. If it is true, then cause and effect become unrelated, and nothing science knows, not even our memories, can be trusted.
Before the Big Bang
Professor Sir Roger Penrose, OM, FRS (born 8 August 1931) Before the Big Bang
Three Different Views of Quantum Weirdness
(and What It Means)
A: According to the orthodox view of quantum mechanics, called the Copenhagen interpretation, a system (represented here by a child’s block) does not occupy a definite state or location until it is measured. Before then it is just a blur of overlapping possibilities.
B: The many worlds interpretation insists that the system occupies all its possible states but that every one of them exists in its own alternate universe. Each universe sees one state only, which is why we never observe the block in two states at once.
C: In Penrose’s interpretation, gravity holds our reality together. In each potential state, the block generates a separate gravitational field. Over time, the energy required to maintain these multiple fields causes the block to settle into one state only—the one that we observe.
See:If an Electron Can Be in Two Places at Once, Why Can't You-by Tim Folger, Photograph by David Berry, Illustrations by Don Foley?
"In Penrose’s interpretation, gravity holds our reality together. In each potential state, the block generates a separate gravitational field.....," rings with a certain importance when one talks about what happens with the very nature of the blackhole. What happens to that information.
Phil Warnell:However, if the second is taken as truth and all is remembering, then what can the force of gravity do to a memory that is not in any, yet of all?
I tried to implement a method by which one could "gauge the significance of the emotive experience" as it may pertain to that "primitive part" of our nature. That we could see "remembering" had been assigned a "quantum reductionist state" within the confines of that methodology?
See:Quantum State reduction as a real phenomenon by Roger Penrose (Oxford)2 Sep 1999
"The block," while holding different gravitational defined consciousness states, had to settle to a strong emotive consolidating force from that experience. You repeatedly relive the experience, while current information saids that the memory can change. See Ledoux.
See:
Dennis William Sciama
Tipping LightCones and Escape Velocity of the Photon
What is Happening at the Singularity?
Science and the Mind: Sir Roger Penrose
Big Bang:One Man's Change of Heart