AND we should consider that God gave the sovereign part of the human soul to be the divinity of each one, being that part which, as we say, dwells at the top of the body, inasmuch as we are a plant not of an earthly but of a heavenly growth, raises us from earth to our kindred who are in heaven. And in this we say truly; for the divine power suspended the head and root of us from that place where the generation of the soul first began, and thus made the whole body upright. When a man is always occupied with the cravings of desire and ambition, and is eagerly striving to satisfy them, all his thoughts must be mortal, and, as far as it is possible altogether to become such, he must be mortal every whit, because he has cherished his mortal part. But he who has been earnest in the love of knowledge and of true wisdom, and has exercised his intellect more than any other part of him, must have thoughts immortal and divine, if he attain truth, and in so far as human nature is capable of sharing in immortality, he must altogether be immortal; and since he is ever cherishing the divine power, and has the divinity within him in perfect order, he will be perfectly happy. Now there is only one way of taking care of things, and this is to give to each the food and motion which are natural to it. And the motions which are naturally akin to the divine principle within us are the thoughts and revolutions of the universe. These each man should follow, and correct the courses of the head which were corrupted at our birth, and by learning the harmonies and revolutions of the universe, should assimilate the thinking being to the thought, renewing his original nature, and having assimilated them should attain to that perfect life which the gods have set before mankind, both for the present and the future.Plato from Timaeus, 90a-d, translated by B. Jowett
Wednesday, February 06, 2008
WE ARE A HEAVENLY FLOWER
Monday, February 04, 2008
Mind Maps: Mathematical Structures?
Plato's doctrine of recollection, however, addresses such criticism by saying that souls are born with the concepts of the forms, and just have to be reminded of those concepts from back before birth, when the souls were in close contact with the forms in the Platonic heaven. Plato is thus known as one of the very first rationalists, believing as he did that humans are born with a fund of a priori knowledge, to which they have access through a process of reason or intellection — a process that critics find to be rather mysterious
What are Mind Maps?
A mind map is a diagram used to represent words, ideas, tasks or other items linked to and arranged radially around a central key word or idea. It is used to generate, visualize, structure and classify ideas, and as an aid in study, organization, problem solving, decision making, and writing.
It is an image-centered diagram that represents semantic or other connections between portions of information. By presenting these connections in a radial, non-linear graphical manner, it encourages a brainstorming approach to any given organizational task, eliminating the hurdle of initially establishing an intrinsically appropriate or relevant conceptual framework to work within.
A mind map is similar to a semantic network or cognitive map but there are no formal restrictions on the kinds of links used.
The elements are arranged intuitively according to the importance of the concepts and they are organized into groupings, branches, or areas. The uniform graphic formulation of the semantic structure of information on the method of gathering knowledge, may aid recall of existing memories.
Well straight to the point then I guess.
Bee:
The important thing about the basis of our societies is not actually its fixed structure but the way to readjust it. A bit of scientific method would be good there.
As I mentioned previously on Backreaction site and in giving subsequent information about this process. It has been a journey of my own discovery, that I would say that at the basis of reality is such a mathematical structure.
I know when this process started for me and it would not serve any purpose at this point to speak to it directly. People have their reasons for and against such a proposal as their being such a mathematical structure, so what currently leads me to say that their are these two opposing views?
Wigner’s Gift Horse By JULIE REHMEYER • Feb 1, 2008 See here for article.
Stephen Wolfram argues that the way to unlock the rest of science is to give up on mathematics and look for explanations analogous to computer code. Very simple computer programs can produce remarkably complex behavior that mimics phenomena science has had difficulty modeling, like the motion of fluids, for example. So studying the behavior of these programs may provide scientists with new insights about these phenomena. Indeed, Wolfram thinks the universe itself may be generated by a computer program simple enough to be expressed in a few lines of code. “If the laws are simple enough, if we look in the right way we’ll find them,” he says. “If they’re not, it will be tougher. The history of physics makes one pessimistic that we could ever end physics. I don’t share that pessimism.”
Tegmark believes in an extreme form of Platonism, the idea that mathematical objects exist in a sort of universe of their own. Imagine that, Tegmark says, “there’s this museum in this Platonic math space that has these mathematical objects that exists outside of space and time,” Tegmark says. “What I’m saying is that their existence is exactly the same as a physical existence, and our universe is one of these guys in the museum.”
Also worth reading is the sum of any position that would infer the stance of Plato versus anti-Plato, to help distinguish whether or not one might have something of value in terms of the question of whether Mathematics is invented or discovered.
Mathematical Platonism and its Opposites by Barry Mazur January 11, 2008. See here.
For the Platonists. One crucial consequence of the Platonic position is that it views mathematics as a project akin to physics, Platonic mathematicians being—as physicists certainly are—describers or possibly predictors—not, of course, of the physical world, but of some other more noetic entity. Mathematics—from the Platonic perspective—aims, among other things, to come up with the most faithful description of that entity.
For the Anti-Platonists. Here there are many pitfalls. A common claim, which is meant to undermine Platonic leanings, is to introduce into the discussion the theme of mathematics as a human, and culturally dependent pursuit and to think that one is actually conversing about the topic at hand.
Mapping the interaction from a scientific point of view?
As I read through the article I had previous insights while reading through Sir Roger Penrose's lecture on the Extended Physical WorldView. While I myself had picked the title, it would have been nicer to show the very image on the start of that lecture.
This is a important statement I am making below because it distinguishes between where we think we might be going in terms of computer technologies versus what will always remain within the human domain.
So on the one hand one might think about technologies in the 21st Century and wonder if computer technology can ever reach the status of Consciousness with which the "synaptic event" could include images, all the while it would include all the history to that point?
While it is never clear to me about the origins of the universe, it had some relation in my mind to what first allowed any soul's expression. While I had shown the relation to the synaptic event, there had to be a place created for such an expression, to be fortunate and validated.
Do I know what plan for every individual is, of course not, but that you choose such an expression is self evident. There is much to the word, "self evident" that remains to be explored within context of this site, and of value, in the iconic image of Raphael's expression with Plato and Aristotle at it's centre.
Now, neuronic networking is supposedly the platform computer technologies can take in their designs, but what true aspect of the emergent process could ever define the human being and one's potential? The information that could enter such an synaptic event within your own thinking mind?
So the process is one of self discovery. About processes within your own self that allow one to possibly develop the new mathematics that speak directly to the very unfolding of the universe?
The Unreasonable Effectiveness of Mathematics in the Natural Sciences by Eugene Wigner
The great mathematician fully, almost ruthlessly, exploits the domain of permissible reasoning and skirts the impermissible. That his recklessness does not lead him into a morass of contradictions is a miracle in itself: certainly it is hard to believe that our reasoning power was brought, by Darwin's process of natural selection, to the perfection which it seems to possess. However, this is not our present subject. The principal point which will have to be recalled later is that the mathematician could formulate only a handful of interesting theorems without defining concepts beyond those contained in the axioms and that the concepts outside those contained in the axioms are defined with a view of permitting ingenious logical operations which appeal to our aesthetic sense both as operations and also in their results of great generality and simplicity.
[3 M. Polanyi, in his Personal Knowledge (Chicago: University of Chicago Press, 1958), says: "All these difficulties are but consequences of our refusal to see that mathematics cannot be defined without acknowledging its most obvious feature: namely, that it is interesting" (p 188).]
What can arise from any person, to have defined that it reaches back into the forms. That it chooses to manifest "as the person" you have become? What lies dormant, that you awake to it in such a way that it will manifest in all that you do, and become part of the "history of recollection" that you unfold in this life, and have learnt these things before? You dream?
I, Robot:
....signs of new life emerge as images photonically flicker in the new logic forming apparatus....
I had a dream....
We might like to think that computers are capable, while the very idea of the "image" holds such vasts amount of information. This is not a new idea from an historical perspective if one ever thought to consider the alchemists of our early science.
How would you contain all the probability and outcomes, with ever looking beyond space and time, to realize that the "heavens" in some way, meet the earth. Manifest within you? Can find re-birthing through you? Inner/outer become one.
Tuesday, January 29, 2008
Phase Transitions and the Unparticles
Another Odd Thing About Unparticle PhysicsHoward Georgi
Fractals have a special property that underpins the odd features of unparticles. They are patterns that are "scale invariant". In the case of Britain, the ins and outs of the coastline contain smaller jagged features that in turn contain smaller ins and outs and so on. This characteristic means that these unparticles don't change appearance when viewed at different scales- which is very different from objects we're familiar with.
The peculiar propagator of scale invariant unparticles has phases that produce unusual patterns of interference with standard model processes. We illustrate some of these effects in e+e− → µ+µ−.
To be a bit more precise, every space that feels "real" has associated with it a sense of distance between any two points. On a line segment like the Koch coastline, we arbitrarily chose the length of one side of the first iterate as a unit length. On the Euclidean coordinate plane the distance between any two points is given by the Pythagorean theorem
Fractals have a special property that underpins the odd features of unparticles. They are patterns that are "scale invariant". In the case of Britain, the ins and outs of the coastline contain smaller jagged features that in turn contain smaller ins and outs and so on. This characteristic means that these unparticles don't change appearance when viewed at different scales- which is very different from objects we're familiar with.
Saturday, January 26, 2008
Wrapping the Energetic Particles to the Cosmos
The Origin of the Highest Energy Particles
Date: 2008-01-09 14:00:00
Abstract:
See:http://pirsa.org/08010000/
Date: 2008-01-09 14:00:00
Abstract:
After almost a century of observations, the ultra-high energy sky has finally displayed an anisotropic distribution. A significant correlation between the arrival directions of ultra-high cosmic rays measured by the Pierre Auger Observatory and the distribution of nearby active galactic nuclei signals the dawn of particle astronomy. These historic results have important implications to both astrophysics and particle physics.
See:http://pirsa.org/08010000/
Wednesday, January 23, 2008
Ueber die Hypothesen, welche der Geometrie zu Grunde liegen.
As I pounder the very basis of my thoughts about geometry based on the very fabric of our thinking minds, it has alway been a reductionist one in my mind, that the truth of the reality would a geometrical one.
The emergence of Maxwell's equations had to be included in the development of GR? Any Gaussian interpretation necessary, so that the the UV coordinates were well understood from that perspective as well. This would be inclusive in the approach to the developments of GR. As a hobbyist myself of the history of science, along with the developments of today, I might seem less then adequate in the adventure, I persevere.
On the Hypotheses which lie at the Bases of Geometry.
Bernhard Riemann
Translated by William Kingdon Clifford
[Nature, Vol. VIII. Nos. 183, 184, pp. 14--17, 36, 37.]
For me the education comes, when I myself am lured by interest into a history spoken to by Stefan and Bee of Backreaction. The "way of thought" that preceded the advent of General Relativity.
Einstein urged astronomers to measure the effect of gravity on starlight, as in this 1913 letter to the American G.E. Hale. They could not respond until the First World War ended.
Translation of letter from Einstein's to the American G.E. Hale by Stefan of BACKREACTION
Fast Forward to an Effect
Bending light around a massive object from a distant source. The orange arrows show the apparent position of the background source. The white arrows show the path of the light from the true position of the source.
To me, gravitational lensing is a cumulative affair that such a geometry borne into mind, could have passed the postulates of Euclid, and found their way to leaving a "indelible impression" that the resources of the mind in a simple system intuits.
Einstein, in the paragraph below makes this clear as he ponders his relationship with Newton and the move to thinking about Poincaré.
The move to non-euclidean geometries assumes where Euclid leaves off, the basis of Spacetime begins. So such a statement as, where there is no gravitational field, the spacetime is flat should be followed by, an euclidean, physical constant of a straight line=C?
Einstein:
It is never easy for me to see how I could have moved from what was Euclid's postulates, to have graduated to my "sense of things" to have adopted this, "new way of seeing" that is also accumulative to the inclusion of gravity as a concept relevant to all aspects of the way in which one can see reality.
See:
On the Hypothese at the foundations of Geometry
Gravity and Electromagnetism?
"The Confrontation between General Relativity and Experiment" by Clifford M. Will
The emergence of Maxwell's equations had to be included in the development of GR? Any Gaussian interpretation necessary, so that the the UV coordinates were well understood from that perspective as well. This would be inclusive in the approach to the developments of GR. As a hobbyist myself of the history of science, along with the developments of today, I might seem less then adequate in the adventure, I persevere.
On the Hypotheses which lie at the Bases of Geometry.
Bernhard Riemann
Translated by William Kingdon Clifford
[Nature, Vol. VIII. Nos. 183, 184, pp. 14--17, 36, 37.]
It is known that geometry assumes, as things given, both the notion of space and the first principles of constructions in space. She gives definitions of them which are merely nominal, while the true determinations appear in the form of axioms. The relation of these assumptions remains consequently in darkness; we neither perceive whether and how far their connection is necessary, nor a priori, whether it is possible.
From Euclid to Legendre (to name the most famous of modern reforming geometers) this darkness was cleared up neither by mathematicians nor by such philosophers as concerned themselves with it. The reason of this is doubtless that the general notion of multiply extended magnitudes (in which space-magnitudes are included) remained entirely unworked. I have in the first place, therefore, set myself the task of constructing the notion of a multiply extended magnitude out of general notions of magnitude. It will follow from this that a multiply extended magnitude is capable of different measure-relations, and consequently that space is only a particular case of a triply extended magnitude. But hence flows as a necessary consequence that the propositions of geometry cannot be derived from general notions of magnitude, but that the properties which distinguish space from other conceivable triply extended magnitudes are only to be deduced from experience. Thus arises the problem, to discover the simplest matters of fact from which the measure-relations of space may be determined; a problem which from the nature of the case is not completely determinate, since there may be several systems of matters of fact which suffice to determine the measure-relations of space - the most important system for our present purpose being that which Euclid has laid down as a foundation. These matters of fact are - like all matters of fact - not necessary, but only of empirical certainty; they are hypotheses. We may therefore investigate their probability, which within the limits of observation is of course very great, and inquire about the justice of their extension beyond the limits of observation, on the side both of the infinitely great and of the infinitely small.
For me the education comes, when I myself am lured by interest into a history spoken to by Stefan and Bee of Backreaction. The "way of thought" that preceded the advent of General Relativity.
Einstein urged astronomers to measure the effect of gravity on starlight, as in this 1913 letter to the American G.E. Hale. They could not respond until the First World War ended.
Translation of letter from Einstein's to the American G.E. Hale by Stefan of BACKREACTION
Zurich, 14 October 1913
Highly esteemed colleague,
a simple theoretical consideration makes it plausible to assume that light rays will experience a deviation in a gravitational field.
[Grav. field] [Light ray]
At the rim of the Sun, this deflection should amount to 0.84" and decrease as 1/R (R = [strike]Sonnenradius[/strike] distance from the centre of the Sun).
[Earth] [Sun]
Thus, it would be of utter interest to know up to which proximity to the Sun bright fixed stars can be seen using the strongest magnification in plain daylight (without eclipse).
Fast Forward to an Effect
Bending light around a massive object from a distant source. The orange arrows show the apparent position of the background source. The white arrows show the path of the light from the true position of the source.
The fact that this does not happen when gravitational lensing applies is due to the distinction between the straight lines imagined by Euclidean intuition and the geodesics of space-time. In fact, just as distances and lengths in special relativity can be defined in terms of the motion of electromagnetic radiation in a vacuum, so can the notion of a straight geodesic in general relativity.
To me, gravitational lensing is a cumulative affair that such a geometry borne into mind, could have passed the postulates of Euclid, and found their way to leaving a "indelible impression" that the resources of the mind in a simple system intuits.
Einstein, in the paragraph below makes this clear as he ponders his relationship with Newton and the move to thinking about Poincaré.
The move to non-euclidean geometries assumes where Euclid leaves off, the basis of Spacetime begins. So such a statement as, where there is no gravitational field, the spacetime is flat should be followed by, an euclidean, physical constant of a straight line=C?
Einstein:
I attach special importance to the view of geometry which I have just set forth, because without it I should have been unable to formulate the theory of relativity. ... In a system of reference rotating relatively to an inert system, the laws of disposition of rigid bodies do not correspond to the rules of Euclidean geometry on account of the Lorentz contraction; thus if we admit non-inert systems we must abandon Euclidean geometry. ... If we deny the relation between the body of axiomatic Euclidean geometry and the practically-rigid body of reality, we readily arrive at the following view, which was entertained by that acute and profound thinker, H. Poincare:--Euclidean geometry is distinguished above all other imaginable axiomatic geometries by its simplicity. Now since axiomatic geometry by itself contains no assertions as to the reality which can be experienced, but can do so only in combination with physical laws, it should be possible and reasonable ... to retain Euclidean geometry. For if contradictions between theory and experience manifest themselves, we should rather decide to change physical laws than to change axiomatic Euclidean geometry. If we deny the relation between the practically-rigid body and geometry, we shall indeed not easily free ourselves from the convention that Euclidean geometry is to be retained as the simplest. (33-4)
It is never easy for me to see how I could have moved from what was Euclid's postulates, to have graduated to my "sense of things" to have adopted this, "new way of seeing" that is also accumulative to the inclusion of gravity as a concept relevant to all aspects of the way in which one can see reality.
See:
Friday, January 18, 2008
The Founder of Probabilty Theory?
I want to understand what makes the world tick. Einstein said he wanted to know what was on God's mind when he made the world. I don't think he was a religious man, but I know what he means.Lenny Susskind
Pierre de Fermat IPA: [pjɛːʁ dəfɛʁ'ma] (August 17, 1601 – January 12, 1665)
With Blaise Pascal, Pierre de Fermat became the founders of the theory of probability.
A Short History of Probability
"A gambler's dispute in 1654 led to the creation of a mathematical theory of probability by two famous French mathematicians, Blaise Pascal and Pierre de Fermat. Antoine Gombaud, Chevalier de Méré, a French nobleman with an interest in gaming and gambling questions, called Pascal's attention to an apparent contradiction concerning a popular dice game. The game consisted in throwing a pair of dice 24 times; the problem was to decide whether or not to bet even money on the occurrence of at least one "double six" during the 24 throws. A seemingly well-established gambling rule led de Méré to believe that betting on a double six in 24 throws would be profitable, but his own calculations indicated just the opposite.
MESSENGER Reveals Mercury’s Geological History
Stefan of Backreaction posted a blog entry called,"Mercury looks like the Moon, nearly... that brought me up to speed on what the planet actually looks like.
His article provides for the links here in this entry, as well sets the stage for the culminating vision I have of our solar system. Looking at the solar system in the processes I outline are important point of seeing the gravitational aspects of the universe as we have come to know it.
I had never considered what the actual surface of Mercury would look like, other then what I had thought it to be, when told as a child. A molten surface.
Seeing Mercury the way it is below provides for some thought about Mercury facing toward the Sun. It's surface looking at the picture below, I was wondering if facing directly in opposition to the Sun would showing brighter spots as we look to the right of this image.
This also raised an interesting question on my mind about how the uniformity of the surface could retain it's moon like look while undergoing the passage of "increased heat" as it faced the sun at anyone time through it's rotation.
Question 4 : What is the structure of Mercury's core?
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
The Gravity Field
Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)
This is always of interest to be because it is an accumulation of the synthesis of views we gain as we come to understand not only the views of on the Window of the universe, as we look at the Sun under information obtain in the neutrino laboratory's and information modelling of how we can now look at the sun with this new view.
But the truth is, the Earth's topography is highly variable with mountains, valleys, plains, and deep ocean trenches. As a consequence of this variable topography, the density of Earth's surface varies. These fluctuations in density cause slight variations in the gravity field, which, remarkably, GRACE can detect from space.
Well, by adding the label of Grace and Grace satellite systems, it is important to me that not only is gravity considered in context of the exploration of space in terms of Lagrangian, but of viewing how we map the earth and the views we obtain of that new gravity model of earth. This application then becomes of interest as we understand how we see the gravity model of Mercury and how the geological structure of Mercury will be reflected in that gravity model.
The Culminating Vision
Fig. 1. Story line showing the principle of least action sandwiched between relativity and quantum mechanics See A call to action
See:
The Periodic Table of the Moon's Strata Time-Variable Gravity Measurements
Andrew Wiles and Fermat
His article provides for the links here in this entry, as well sets the stage for the culminating vision I have of our solar system. Looking at the solar system in the processes I outline are important point of seeing the gravitational aspects of the universe as we have come to know it.
I had never considered what the actual surface of Mercury would look like, other then what I had thought it to be, when told as a child. A molten surface.
Using the laser altimeter, MESSENGER will verify the presence of a liquid outer core in Mercury by measuring the planet's libration. Libration is the slow 88-day wobble of the planet around its rotational axis.
Seeing Mercury the way it is below provides for some thought about Mercury facing toward the Sun. It's surface looking at the picture below, I was wondering if facing directly in opposition to the Sun would showing brighter spots as we look to the right of this image.
This also raised an interesting question on my mind about how the uniformity of the surface could retain it's moon like look while undergoing the passage of "increased heat" as it faced the sun at anyone time through it's rotation.
Question 4 : What is the structure of Mercury's core?
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
More recently, Earth-based radar observations of Mercury have also determined that at least a portion of the large metal core is still liquid to this day! Having at least a partially molten core means that a very small but detectable variation in the spin-rate of Mercury has a larger amplitude because of decoupling between the solid mantle and liquid core. Knowing that the core has not completely solidified, even as Mercury has cooled over billions of years since its formation, places important constraints on the thermal history, evolution, and core composition of the planet.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
This MESSENGER image was taken from a distance of about 18,000 kilometers (11,000 miles) from the surface of Mercury, at 20:03 UTC, about 58 minutes after the closest approach point of the flyby. The region shown is about 500 kilometers (300 miles) across, and craters as small as 1 kilometer (0.6 mile) can be seen in this image.
The Gravity Field
Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)
This is always of interest to be because it is an accumulation of the synthesis of views we gain as we come to understand not only the views of on the Window of the universe, as we look at the Sun under information obtain in the neutrino laboratory's and information modelling of how we can now look at the sun with this new view.
But the truth is, the Earth's topography is highly variable with mountains, valleys, plains, and deep ocean trenches. As a consequence of this variable topography, the density of Earth's surface varies. These fluctuations in density cause slight variations in the gravity field, which, remarkably, GRACE can detect from space.
Well, by adding the label of Grace and Grace satellite systems, it is important to me that not only is gravity considered in context of the exploration of space in terms of Lagrangian, but of viewing how we map the earth and the views we obtain of that new gravity model of earth. This application then becomes of interest as we understand how we see the gravity model of Mercury and how the geological structure of Mercury will be reflected in that gravity model.
The Culminating Vision
Fig. 1. Story line showing the principle of least action sandwiched between relativity and quantum mechanics See A call to action
See:
Thursday, January 17, 2008
LTool
Posted by
PlatoHagel
at
8:22:00 PM
Labels:
L5,
lagrangian,
Moon
Tuesday, January 15, 2008
Boltzmann's Brain
There is a new article by Dennis Overbye in the New York Times called, Big Brain Theory: Have Cosmologists Lost Theirs?
Source: Sean Carroll, California Institute of Technology
Alway part of the process is to find within my own site information that I had collected to help me understand where Ludwig Boltzmann comes into the picture in the above article.
Now of course I go over to Cosmic Variance's version of Boltzmann's Universe where the article above is referred too.
I look at the discussion that is taking place and try and put the exchange and points raised in mind so that I can understand as best I can "the jest" of the problem and the jest of what people are saying.
This isn't an attempt to rewrite the article, but to open the door to a better understanding of what is being portrayed.
Sean:lylebot, this is basically the point of the post — if the universe is a fluctuation around thermal equilibrium, then no matter what you condition on concerning our present state (including literally everything we know about it), it is overwhelmingly likely that it is a random fluctuation from a higher-entropy past. Even if we have memories apparently to the contrary!
The Universe and Irreversibility
Now it is quite loosely put together in my head that I went searching to try and understand the context in which the universe was placed in accordance to the state of equilibrium.
See: What is the entropy of the universe?
It could be the weirdest and most embarrassing prediction in the history of cosmology, if not science.
If true, it would mean that you yourself reading this article are more likely to be some momentary fluctuation in a field of matter and energy out in space than a person with a real past born through billions of years of evolution in an orderly star-spangled cosmos. Your memories and the world you think you see around you are illusions.
Source: Sean Carroll, California Institute of Technology
Alway part of the process is to find within my own site information that I had collected to help me understand where Ludwig Boltzmann comes into the picture in the above article.
Now of course I go over to Cosmic Variance's version of Boltzmann's Universe where the article above is referred too.
I look at the discussion that is taking place and try and put the exchange and points raised in mind so that I can understand as best I can "the jest" of the problem and the jest of what people are saying.
This isn't an attempt to rewrite the article, but to open the door to a better understanding of what is being portrayed.
Sean:lylebot, this is basically the point of the post — if the universe is a fluctuation around thermal equilibrium, then no matter what you condition on concerning our present state (including literally everything we know about it), it is overwhelmingly likely that it is a random fluctuation from a higher-entropy past. Even if we have memories apparently to the contrary!
The Universe and Irreversibility
Now it is quite loosely put together in my head that I went searching to try and understand the context in which the universe was placed in accordance to the state of equilibrium.
In equilibrium, the entropy of the system cannot increase (because it is already at a maximum) and it cannot decrease (because that would violate the second law of thermodynamics). The only changes allowed are those in which the entropy remains constant.
See: What is the entropy of the universe?
Wednesday, January 09, 2008
HENRI POINCARE : Mathematics and Science-Last Essays
Jules Henri Poincare (1854-1912)
HENRI POINCARE Mathematics and Science:Last Essays
The scientist does not study nature because it is useful. He studies it because he delights in it, and he delights in it because it is beautiful.
HENRI POINCARE Mathematics and Science:Last Essays
Since we are assuming at this juncture the point of view of the mathematician, we must give to this concept all the precision that it requires, even if it becomes necessary to use mathematical language. We should then say that the body of laws is equivalent to a system of differential equations which link the speed of variations of the different elements of the universe to the present values of these elements.
Such a system involves, as we know, an infinite number of solutions, But if we take the initial values of all the elements, that is,their values at the instant t =(which would correspond in ordinary language to the "present"), the solution is completely determined, so that we can calculate the values of all the elements at any period
whatever, whether we suppose />0, which corresponds to the "future," or whether we suppose t<0, which corresponds to the "past." What is important to remember is that the manner of inferring the past from the present does not differ from that of inferring the future from the present.
Subscribe to:
Posts (Atom)