Similar, "in my thinking" to the expansion of our universe?
Artist's impression of a Wolf-Rayet star
About 150 Wolf-Rayets are known in our own Milky Way Galaxy, about 100 are known in the Large Magellanic Cloud, while only 12 have been identified in the Small Magellanic Cloud. Wolf-Rayet stars were discovered spectroscopically in 1867 by the French astronomers Charles Wolf and Georges Rayet using visual spectrometery at Paris Observatory.
There are some thoughts manifesting about how one may have see this energy of the Blue giant. It's as if the examples of what began with great force can loose it's momentum and dissipate very quickly(cosmic winds that blow the dust to different places)?
Illustration of Cosmic Forces-Credit: NASA, ESA, and A. Feild (STScI)
Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate.
What if the Wolf-Rayet star does not produce the jets that are exemplified in the ideas which begin blackhole creation. Is this part of blackhole development somehow in it's demise, that we may see examples of the 150 Wolf-Rayets known in our own Milky Way as example of what they can become as blackholes, or not.
Quark to quark Distance and the Metric
If on such a grand scale how is it thoughts are held in my mind to microscopic proportions may not dominate as well within the periods of time the geometrics develop in the stars now known as Wolf-Rayet. So you use this cosmological model to exemplify micro perspective views in relation to high energy cosmological geometrics.
Plato:
"Lagrangian views" in relation may have been one result that comes quickly to my mind. Taking that chaldni plate and applying it to the universe today.
While I had in the previous post talked about how Lagrangian views could dominate "two aspects of the universe," it is not without linking the idea of what begins as a strong gravitational force to hold the universe together, that over time, as the universe became dominated by the dark energy that the speeding up of inflation could have become pronounced by discovering the holes created in the distances between the planets and their moons. Between galaxies.
I make fun above with the understanding of satellites travelling in our current universe in relation to planets and moons, as well as galaxies. To have taken this view down to WMAP proportions is just part of what I am trying to convey using very simplistic examples of how one may look at the universe, when gravity dominated the universe's expansion versus what has happened to the universe today in terms of speeding up.
LOOP-DE-LOOP. The Genesis spacecraft's superhighway path took it to the Earth-sun gravitational-equilibrium point L1, where it made five "halo" orbits before swinging around L2 and heading home.Ross
If the distances between galaxies have become greater, then what saids that that the ease with which the speeding up occurs is not without understanding that an equilibrium has been attained, from what was once dominate in gravity, to what becomes rapid expansion?
This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel.
Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions.
Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.