The Distant Gamma-Ray Burst GRB 050904. Image credit: ESO
Mon, 12 Sep 2005 - An Italian team of astronomers have found a gamma ray burst that blew up 12.7 billion light-years away - the most distant ever seen. Astronomers have calculated that it exploded with 300 times more energy than our Sun will put out in its entire 10+ billion year lifespan. The blast was discovered by NASA's Swift satellite, which is dedicated to discovering these powerful explosions.
We just want to know what motivates any "inflationary idea" to have it consider in all the entropic states that we recognize today, may have arisen from a simpler time. We may be talking about the beginning of the universe here, but also the the birth of blackholes. So, if we can see that far back, what remnants of the explosion sits with us today?
Well I looked at our sun as an example.
How were Sun's formed?
Source: Image Credit: Nicolle Rager Fuller/NSFStars shine by burning hydrogen. The process is called nuclear fusion. Hydrogen burning produces helium "ash." As the star runs out of hydrogen (and nears the end of its life), it begins burning helium. The ashes of helium burning, such as carbon and oxygen, also get burned. The end result of this fusion is iron. Iron cannot be used for nuclear fuel. Without fuel, the star no longer has the energy to support its weight. The core collapses. If the star is massive enough, the core will collapse into a black hole. The black hole quickly forms jets; and shock waves reverberating through the star ultimately blow apart the outer shells. Gamma-ray bursts are the beacons of star death and black hole birth.