Wednesday, November 16, 2005

Paul Dirac and Geometrical Thinking?


Into the Antiworld was originally staged at CERN inside the underground cavern that houses the Delphi experiment, in which collisions between electrons and their antiparticles - positrons - are studied. That setting must have been awe-inspiring, particularly as the show closed. The audience would have been whisked from the wonder and novelty of Dirac's theory over 70 years ago to the sophisticated particle physics experiments of today that the discovery inspired. At CERN, the curtain behind the stage ripped apart to reveal the Delphi detector the performance ended - but the gigantic photograph of the Delphi experiment that concluded the show at the Bloomsbury worked surprisingly well.


Oh what fanfare and dance is given these genius's that we find the story ends with where the future begins.

The Quantum Theory of the Electron



Paul Dirac


When one is doing mathematical work, there are essentially two different ways of thinking about the subject: the algebraic way, and the geometric way. With the algebraic way, one is all the time writing down equations and following rules of deduction, and interpreting these equations to get more equations. With the geometric way, one is thinking in terms of pictures; pictures which one imagines in space in some way, and one just tries to get a feeling for the relationships between the quantities occurring in those pictures. Now, a good mathematician has to be a master of both ways of those ways of thinking, but even so, he will have a preference for one or the other; I don't think he can avoid it. In my own case, my own preference is especially for the geometrical way.


Can one distinguish something that is of nature as the basis of reality, and see this before it is algebraically written? Jacques mention where the intuitive lines ends and where the math begins.

So from this statement then, it would have been impossible for Dirac to know what the matrices would look before it was algebraically written?

If there is "no physics" and we are defining things from the horizon or boundary, then what geometry wil be revealing of this nature? Can it be concieved as it was by Dirac?

I was thinking of Lenny Susskinds picture of the rubber band in his mind after working hard to mathematically understand. Did comprehension come by way of his mathe equations or by geometriclaly viewing?

THE LANDSCAPE [12.4.03]
A Talk with Leonard Susskind


Einstein said he wanted to know what was on God's mind when he made the world. I don't think he was a religious man, but I know what he means.


Albrecht Dürer and The Magic Square



So the complexity of geometrical form would have been of value if we had seen the way that it might have taken that vision into the geometrical formations of spin orientated understandings? Isomorphic relations of the orbitals relations in cosmological events?

Tuesday, November 15, 2005

Oh My God Particle-Revisited

I just wanted to drop this link here for now.


The animation shows schematically the behavior of the gas molecules in the presence of a gravitational field. We can see in this figure that the concentration of molecules at the bottom of the vessel is higher than the one at the top of the vessel, and that the molecules being pushed upwards fall again under the action of the gravitational field.



Gerard "t Hooft:

The Holographical Mapping of the Standard Model onto the Blackhole Horizon

Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon’s dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.


So we are still looking at the horizon here.

In reference to the God Particle. This was first revealed in the 1991 Fly's eye experiment.

Oh-My-God particle

On the evening of October 15, 1991, an ultra-high energy cosmic particle was observed over Salt Lake City, Utah. Dubbed the "Oh-My-God particle" (a play on the nickname "God particle" for the Higgs boson), it was estimated to have an energy of approximately 3 × 1020 electronvolts, equivalent to about 50 joules—in other words, it was a subatomic particle with macroscopic kinetic energy, comparable to that of a fastball, or to the mass-energy of a microbe. It was most likely a proton travelling with almost the speed of light (in the case that it was a proton its speed was approximately (1 - 4.9 × 10-24)c – after traveling one light year the particle would be only 46 nanometres behind a photon that left at the same time) and its observation was a shock to astrophysicists.

Since the first observation, by the University of Utah's Fly's Eye 2, at least fifteen similar events have been recorded, confirming the phenomenon. The source of such high energy particles remains a mystery, especially since interactions with blue-shifted cosmic microwave background radiation limit the distance that these particles can travel before losing energy (the Greisen-Zatsepin-Kuzmin limit).

Because of its mass the Oh-My-God particle would have experienced very little influence from cosmic electromagnetic and gravitational fields, and so its trajectory should be easily calculable. However, nothing of note was found in the estimated direction of its origin.


Why was it necessary to invoke God here as you did Wolfgang? This was around for some time, and now, such references have found their way into particle collisions perspectives? :)

Quantum gravity is the field devoted to finding the microstructure of spacetime. Is space continuous? Does spacetime geometry make sense near the initial singularity? Deep inside a black hole? These are the sort of questions a theory of quantum gravity is expected to answer. The root of our search for the theory is a exploration of the quantum foundations of spacetime. At the very least, quantum gravity ought to describe physics on the smallest possible scales - expected to be 10-35 meters. (Easy to find with dimensional analysis: Build a quantity with the dimensions of length using the speed of light, Planck's constant, and Newton's constant.) Whether quantum gravity will yield a revolutionary shift in quantum theory, general relativity, or both remains to be seen


One needs to keep perspective on what is happening here, and as a layman, it is extremely difficult. Yet, do I seem to understand what these season vets are doing? More then just reading the NYT times for sure :)

  • The Fly's Eye and the Oh My God Particle John Ellis was instrumental in opening up perspective here. What is happening outside of collision reductionist processes of the colliders
  • Laying the Foundation with Respect

    It is most certain that at this point the public would have been left behind, so is there a way to bring perspective at this point on where you are now?

    I recognize the generalization and roads that lead to blackhole as a basis for considerations. What would draw ones atyemtion to this horizon. Lee Smolin in his book gave adequate discription that I just pointed out here.

    Three Roads to Quantum Gravity, by Lee Smolin, pg 171


    I know it might seem that if this conversation is now highlighting the intricacies of blackhole dynamics, then what exactly are you doing?



    By giving a visual map of the Bekenstein Bound this help to direct my attention to the mapping that had been going on theorectically here.

    Mine would definitiely be generalizations, but work by others lead to deeper insights.

    Conformal Field Theory

    A conformal field theory is a quantum field theory (or statistical mechanics model at the critical point) that is invariant under the conformal group. Conformal field theory is most often studied in two dimensions where there is a large group of local conformal transformations coming from holomorphic functions.


    So what "tidbits" had already been out there then that would help.


    Black Holes and Beyond:
    Harvard's Andrew Strominger on String Theory

    Quantum Micostates?

    The old version of string theory, pre-1995, had these first two features. It includes quantum mechanics and gravity, but the kinds of things we could calculate were pretty limited. All of a sudden in 1995, we learned how to calculate things when the interactions are strong. Suddenly we understood a lot about the theory. And so figuring out how to compute the entropy of black holes became a really obvious challenge. I, for one, felt it was incumbent upon the theory to give us a solution to the problem of computing the entropy, or it wasn't the right theory. Of course we were all gratified that it did.


    While this is a past issue for most of you it is leading in the direction you are talking I assume.


    Holography encodes the information in a region of space onto a surface one dimension lower. It sees to be the property of gravity, as is shown by the fact that the area of the event horizon measures the number of internal states of a blackhole, holography would be a one-to-one correspondance between states in our four dimensional world and states in higher dimensions. From a positivist viewpoint, one cannot distinquish which discription is more fundamental.

    Pg 198, The Universe in Nutshell, by Stephen Hawking

    Gary T. Horowitz and Juan Maldacena,

    The purpose of this note is to provide a possible answer to this question. Rather than the radical modification of quantum mechanics required for pure states to evolve into mixed states, we adopt a more mild modification. We propose that at the black hole singularity one needs to impose a unique final state boundary condition. More precisely, we have a unique final wavefunction for the interior of the black hole. Modifications of quantum mechanics where one imposes final state boundary conditions were considered in [6,7,8,9]. Here we are putting a final state boundary condition on part of the system, the interior of the black hole. This final boundary condition makes sure that no information is “absorbed” by the singularity.


    While there is no "apparent relationship(?)" between microstate blackhole production and blackholes what would make one think that particle collsions can be written as dual blackholes?

    Sunday, November 13, 2005

    Dmitri Ivanovich Mendeleev: The Law of Octaves

    Dmitri Mendeleev in 1897

    Courtesy Edgar Fahs Smith Memorial Collection, Department of Special Collections, University of Pennsylvania Library


    Dmitri Ivanovich Mendeleyev (Russian: Дми́трий Ива́нович Менделе́ев listen ▶(?)) (8 February (O.S. 27 January) 1834 in Tobolsk – 2 February (O.S. 20 January) 1907 in Saint Petersburg), was a Russian chemist. He is renowned for being one of the two scientists who created the first version of the periodic table of elements. Unlike other contributors to the table, Mendeleyev managed to predict the properties of elements yet to be discovered. In several cases he even ventured to question the accuracy of the accepted atomic weights, arguing that they did not correspond to those predicted by the Periodic Law, and here too subsequent research proved him correct.


    Now of course I have made some inferences here and who hasn't when it came to sound and it's values? I've explained this here.

    But by exploring the value of the geometric forms, of the square, and the triangle these were simplistic analogies to earth(matter) and the triangle (energy) By simple addition of both these forms, and by looking at the value of Octave=do, re, mi, fa sol la ti do, etc. There had to be a injection point for this octave to ascend?

    Now just take this as a story of the plot and look at what this plot is producing, not where science is, but of the easily converted analogies to the thinking of that sound in our universe can make to the elemental structure Mendeleev first sought out to map.

    So by joining the square and the triangle, we see where "four triangles" are produced inthe form of the pyramid.

    It also asks how can this idea of matter and energy have been sent to another octave, and hence an idealization of the Law of Octaves. So between mi and Fa, such injection would have lead any thinking to have wondered this associative function to what could transpire, if such a completion could have been modelled in the pyramid shape.

    Four primary triangles that reprsent the basis of the transmutation of energy from the four lowers states of matter considerations to the triangles, and the ascension of vibrations readily asseted to be in the most rarified of "matter forms (particle reductionism)" associative with energy at this peak?

    Proceedings of Societies [Report on the Law of Octaves]

    Mr. JOHN A. R. NEWLANDS read a paper entitled "The Law of Octaves, and the Causes of Numerical Relations among the Atomic Weights."[41] The author claims the discovery of a law according to which the elements analogous in their properties exhibit peculiar relationships, similar to those subsisting in music between a note and its octave. Starting from the atomic weights on Cannizzarro's [sic] system, the author arranges the known elements in order of succession, beginning with the lowest atomic weight (hydrogen) and ending with thorium (=231.5); placing, however, nickel and cobalt, platinum and iridium, cerium and lanthanum, &c., in positions of absolute equality or in the same line. The fifty-six elements[42] so arranged are said to form the compass of eight octaves, and the author finds that chlorine, bromine, iodine, and fluorine are thus brought into the same line, or occupy corresponding places in his scale. Nitrogen and phosphorus, oxygen and sulphur, &c., are also considered as forming true octaves. The author's supposition will be exemplified in Table II., shown to the meeting, and here subjoined:--


    Now such a colorful model of the pyramid to me in such oscillations mode seemed to reveall a dynamic form of color and it's variations. Is this what sound values of had left for us in our hydrogen spectrum mapped to see what energy valuation had occurred? The blacklines.

    So it was not long, that such idealization about the value of sound might reveal it's consolidational effect, as we compared low and high sounds of value, to this spectrum. That low sounds were very matter orientated(consolidated), while high sound were very revealing of the vibratory function of energy valuations seen at the peak of that pyramid? The height of enrgy valuations in relation to particle reductionism. So what would this pyramid reveal in the thoughts of all humanity then? Simple deduction form from model participation is all. It gave insight into the outward expression of these matters(body) fluid emotive forces, to mental states of energy valuations?

    I am not saying this is the way of it either, just that such a platform and model developememnt could have sparked other ideas, as Smolin so hopes might be revealled for further explorations into the new theoretical idea developement, to help us look at the way nature is.

    Mendeleev example is a case in point where such ideas and sound valuation seem to penetrate the mind as to the essence and nature of matter. How strange then I might be, to say, that in our very own hearts is the transition point between the lower centers of man(his earth nature), that such ascension of this vibratory thought formsanaogy of the triangle to energy) would be, held in the clear mind?

    But let's not forget some real science here.


    The beam of positively-charged ions generates a slight magnetic field that interacts with an externally-applied magnetic field. The net result is that the trajectory of a charged particle is curved to an extent that depends on its speed (determined by its mass). When the beam of a mixture of isotopes of different masses falls on a photographic plate, the different isotopes converge at different points, corresponding to the different radii of their semicircular paths.

    The mathematical equation that describes this phenomenon is: m/e = H2 r2 /2V, where m is the mass of the ion, e is the charge of the ion, H is the magnetic field strength, r is the radius of the semicircle, and V is the accelerating potential.

    Saturday, November 12, 2005

    The Future of the Book

    I have definite ideas about the future in this medium Clifford.

    First let me say, that Indymedia was the first introduction to "real time" reporting aside from TV network medias distributors. If you could bring other perspectives to the realites of our world, then indeed media in terms of pictures, live video shots, could help you present more ideas to the public.

    How much of a effect does this have?

    One might talk about blogging and the effect it has about giving power to the individual in the street to prersnt views from the front lines. Has been well along in it's developemental stages. I am just presentng a safe scenario and the pushing of the envelope to considerations of laws about copyright/copyleft? To bring this dynamcial world of the internet into a responsible forum of the development of minds.



    If one knew the fog that is created in life, askes for the Clear MInd, then where shall we begin? A Tibetan might ask for a priest at his bedside(Tibetan Book of the Dead), so that he can walk the indivdidual through the trepidations of a "material world" as one is dying. To help one realize to this Clear light?

    It had to begin then that if minds are going to involve themselves in a sphere of personalities, then they should be well prepared for how this developmental process is evovling our consciousness. How historical figures are part and parcel of the history of the world on another level that we do not see? Rings around this planet? Rings around us? What is the color of your mind?

    My mind goes back first though in a historical sense to Gamow. I know most do not like to live in the past, but this sets up certain ideas about the future. The freedoms of expression. The developemental idealization of a free society, and not one held too.



    Most of us know who Richard Stallman is right?



    The GNU?


    I was thinking of the Cathedral and the Bizzare, Netscape and Microsoft, and how this developement is moved to ideas about the creative commons and the desire of what that "future book" should be?

    Making Prisons for our Children's Minds



    The dangers of being held into Doom conspirative games while introducing story forms for a pro-active idealization about "using toys" to encourage destructive attitudes? Locking our childrens "minds" within rooms of destruction? Predators who prey on our children.

    Future of Blogging

    In one sense the idea about the pictures and how they are implemented in these blogging articles, and the way html works from blogging to weblog. The future of the mind of the internet

    We seen Jacques's disgust with the way you see things in Word Press and the way they end up appearing? Uiversal html directtives applicable to all blogging software

    The limitation put on those who would like to use imaging, but are cut out because of the adminstrative duties held for Cosmic Variance Little Rascals. Here in this blogging sphere, will others be allowed to post their pictures?

    What is this future that our minds are evolving too, as we sit at the desk and find others of like mind across from us. Have entered the world of personalilites and have left the planet for another type of world?

    Thursday, November 10, 2005

    Timaeus:Laying the Ground rules on Genesis



    You all know that you each have a respective hand on the elephant, and thsoe who would contribute their qunatum mathematics are new comers to what had already existed. As the craftsman Plato, I created the elephant in the thought of the man for this time:)


    Genesis Timaeus 27c-34a


    Sometimes as you read my dialogues you discover the flavour of individuals who had passed through these readings, and in selected words, highlighted the logic with which they would highlight my approach, and speak about science and the way of it?

    Had I known that when I wrote this dialogue that minds like Einstein, or a Hooft would travel through these sections, I might then of assigned the "Craftsman" to different people here, as they developed the models of the world, with which this process speaks too.

    Let me pick an example then for you and say that this perspectve I select holds one accountable, and recognizes that in this case it is becoming and perishable. A I highlight a section for you and you read you will understand.



    Now some of you know that early on in this blog John Baez's view about the soccer ball was most appealing one for consideration, but indeed, the sphere as the closet example could all of a sudden become the ideas for triangulations never crossed my mind. Nor that Max Tegmark would tell us, about the nature of these things.

    Is not, as John would like us to have believed? The "soccer ball" is dead, but not my Platomic form. It will remain, and live in the hall of the infamous, as a model of the way the world is created? It's underlying nature? It's "to be," as a Shakespearean thought would also have it's "infliction" on my very own words.

    But let me first clarify some things here before I loose myself amongst all mmy writings, as it is difficult to retain the mind of individuals in the characters of these dialogues so that the discourse is found relevant in ways of a future, as I have first shown thus.

    Timaeus:
    First then, in my judgment, we must make a distinction and ask, What is that which always is and has no becoming; and what is that which is always becoming and never is? That which is apprehended by intelligence and reason is always in the same state; but that which is conceived by opinion with the help of sensation and without reason, is always in a process of becoming and perishing and never really is. Now everything that becomes or is created must of necessity be created by some cause, for without a cause nothing can be created.


    Now let me say that if you are to define the rules of the game, then it will be that each would come from their corner, and from these distinctive positions, bias themselves to what I had always laid first before you.

    So the ground rules had been laid long before any of you would speak on the ideas of emergence or not, first principle or not, and the defined shapes or not?

    So by these implications you have to then known the logic with which you would approach this discourse with science and all who have used my dialogues :)

    Lee Smolin:
    -Stick to the issues raised. If someone raises a criticism, whether its done according to your standards of rhetoric or not, just answer the substantial science issue. Don’t waste our time with discussion about anything else. Don’t respond to a criticism on a specific point by changing the subject.

    -No personal attacks, absolutely none. If someone has a Ph.D., then they are credentialed. Discuss with them in good faith and with respect.

    -Let’s strive to agree on facts before discussing interpretation. Insist on precision and honesty, don’t allow exaggeration, and admit it gracefully when you are wrong or when the evidence does not support something you would like to be true. If someone questions the status of a claim, don’t say “everyone I respect believes X is true.” Say, X is in fact unproven, but there is evidence for it, which is exactly the following….

    -Listen carefully to those professional colleagues who read the evidence differently from you, and try to understand sympathetically and in good faith, why they do so.

    -Restrain your own communities. Make it clear that it is not acceptable to you when those in your committee insult others or publish or post things that are exaggerated or false. If someone insists on behaving badly, it is up to their community to restrain them. Make it clear that repeatedly treating colleagues disrespectfully in a public forum amounts to professional misconduct. The same is true for repeated cases of knowingly exaggerated or misleading statements in a public forum.

    If we can all agree to some basic rules like this I am optimistic that we-and science- will come out better from the debates ahead.


    While Lubos has some ideas of his own here, then it seems fair that we should work on these "ground rules" so that each understands that when they step on stage, they had both agreed to the plot that would take hold of science for all to see.

    Lubos Motl:
    These rules are, first of all, a proposal for a complete and thorough politicization of all of science. The first point is that personal integrity (or scientific integrity) is a very subjective thing that a person simply has or has not. And people will never agree whether certain things have been honest or not.



    So if Lee Smolin, sets the "ground rules" while Lubos seeks to develope clarity from position and Clifford the stage, then we would know that your bias's would have to be put aside, in order to proceed. Previous conversations failed, Lubos and Lee:)I have watched your respective positions and felt Lee's feelings on trying, but never really succeeding, to adventure respective positions as one would have put it on stage. The Krauss issue timing is impecabble not for book publicity gain but for how one were to develope the scripts of science in dicussion.

    At these meetings of mind, the idealization had been first spelt out in my story of Timaeus, now it is your turn as "to be" the Shakespeare, Einstein or t"hooft would be.

    Monday, November 07, 2005

    Sum Over Histories


    So how does all this come together into a physical theory? It turns out that the proper procedure is to construct every possible diagram allowed by the theory (for a given state of input and output particles and how they're moving) and add up the corresponding complex numbers. The result is essentially the "wave function" for that specific input-output state combination, and by squaring that number you can determine the probability that the given input will result in the given output. Doing that is how theorists at particle accelerators earn their keep.

    Principal of Least Action

    Edwin F. Taylor


    The least-action principle is an assertion about the nature of motion that provides an alternative approach to mechanics completely independent of Newton's laws. Not only does the least-action principle offer a means of formulating classical mechanics that is more flexible and powerful than Newtonian mechanics, [but also] variations on the least-action principle have proved useful in general relativity theory, quantum field theory, and particle physics. As a result, this principle lies at the core of much of contemporary theoretical physics.
    Thomas A. Moore "Least-Action Principle" in Macmillan Encyclopedia of Physics, John Rigden, editor, Simon & Schuster Macmillan, 1996, Volume 2, page 840.


    PRINCIPLE OF LEAST ACTION INTERACTIVE
    Java programming by Slavomir Tuleja
    Text by Edwin F. Taylor and Slavomir Tuleja
    Draft of March 12, 2003



    Here L is called the Lagrangian. In simple cases the Lagrangian is equal to the difference between the kinetic energy T and the potential energy V, that is, L = T – V. In this interactive document we will approximate a continuous worldline with a worldline made of straight connected segments. The computer then multiplies the value of (T – V) on each segment by the time lapse t for that segment and adds up the result for all segments, giving us an approximate value for the action S along the entire worldline. Our task is then to move the connected segments of the worldline so that they result in the minimum total value of the action S.

    Sunday, November 06, 2005

    So Let's have some Fun

    Now of course, the time travel issues are always quite endearing, because good thinking minds can come up with a imaginative way to travel. What stories are these, that are created?


    Back to the Future




    Contact



    Timeline



    Frequency


    So maybe you have some "ole or new," that you would like to add to the list?

    So we know too, that these versions were based on some "historical view" that came from the basis of math? Who is this, that derived and made room for such issues to materialize so imaginatively?


    Welcome to the companion Web site to the NOVA program "Time Travel," originally broadcast on October 12, 1999. In the program, leading physicists delve into the mystery of whether time travel is possible, and if so, how one might go about building a time machine. Here's what you'll find online:


    So let's go back in time a bit.

    Ronald L. Mallett
    Department of Physics, 2152 Hillside Road and UniÍersity of Connecticut, Storrs, CT 06269, USA
    Received 19 January 2000; accepted 3 April 2000
    Communicated by P.R. Holland


    Abstract
    The gravitational field due to the circulating flow of electromagnetic radiation of a unidirectional ring laser is found by solving the linearized Einstein field equations at any interior point of the laser ring. The general relativistic spin equations are then used to study the behavior of a massive spinning neutral particle at the center of the ring laser. It is found that the particle exhibits the phenomenon known as inertial frame-dragging. q2000 Elsevier Science B.V. All rights reserved.



    Van Stokum cylinder by David Darling
    A time machine based on an immense cylinder spinning at near-light speed. The physicist W. J. van Stokum realized in 1937 that such an object would effectively stir spacetime as if it were treacle, dragging it along as the cylinder turned. What van Stokum didn't realize is that circumnavigating such a cylinder can lead to closed time-like paths. Anyone orbiting the cylinder in the direction of the spin would be caught in the current and, from the perspective of a distant observer, exceed the speed of light and thus travel back in time. Circling the cylinder in the other direction with just the right trajectory would project the subject into the future. The van Stokum time machine is based on the Lense-Thiring effect and uses ordinary matter but of enormous density - many orders of magnitude greater than that of nuclear matter.


    And some general comments:

    The century-old dream of time travel remains one of our greatest control fantasies—irrational and irresistible, supremely conducive to megalomania, born of morbid curiosity and mortal dread. Barring the odd literary anachronism (Rip Van Winkle's big-sleep displacement, the Connecticut Yankee's Camelot stopover), it wasn't until 1895, when H.G. Wells unveiled The Time Machine, that the concept crystallized in the public consciousness, spanning nuts-and-bolts mechanics to abstruse metaphysics.

    Saturday, November 05, 2005

    Gott Time?

    Okay Clifford, enough's enough. Some of like to be genuine and eloquent in our speech as well. So I'll try my best.

    You had to understand that without this inductive/deductive topological sense, this would not help one to identify what Greene is saying. You had to know what this represent in our valuations of time as we look throughout the universe? Etc, etc, etc:)

    Brian Greene:
    it turns out that within string theory ... there is actually an identification, we believe, between the very tiny and the very huge. So it turns out that if you, for instance, take a dimension - imagine its in a circle, imagine its really huge - and then you make it smaller and smaller and smaller, the equations tell us that if you make it smaller than a certain length (its about 10-33 centimeters, the so called 'Planck Length') ... its exactly identical, from the point of view of physical properties, as making the circle larger. So you're trying to squeeze it smaller, but actually in reality your efforts are being turned around by the theory and you're actually making the dimension larger. So in some sense, if you try to squeeze it all the way down to zero size, it would be the same as making it infinitely big. ...



    I notice this comment previous about Richard Gott. I returned to my archives in the internet world for information that I had already cataloged. How and why, I will not say right now, but it is about the prospect of the "future" and about where we had been in our "past."


    Imagine then--and put aside the engineering problems for a moment--a machine big enough to walk into. As you would walk forward within the confines of the light beam, (see diagram below) you'd have the impression of moving forward, but because of the space-time vortex, you'd actually be moving backward. You could walk back through time--maybe even passing yourself as you entered the ring.
    (does this sound familiar Steven?)

    So who is Richard Gott, but first, some of you good readers might recogize what Sean has to say about time travel?

    Time Travel in Einstein's Universe: The Physical Possibilities of Travel through Time

    The notion of closed timelike curves in the real world is hard to reconcile with our intuitive understanding of causality. Perhaps one can find global solutions to general relativity incorporating closed timelike curves. These, in effect, would be time machines. But it may be impossible to construct such a system in a local region of space. Theorems along these lines were proved by Frank Tipler in the 1970s. Tipler assumed that the energy density was never negative and showed that closed timelike curves could never arise in a local region without also creating a singularity. This was reassuring, as we could hope that both the singularity and the closed timelike curves were hidden behind an event horizon (although this was not part of the proof).


    Now I spoke in regards to the name of Ronald Mallet for a reason, other then to insight hope into people, and tell them to disregard the color of skin. That the mind still works in all it's wonders whether in a male or female, black, white, yellow or green. Okay, so I went to far in the color dynamics, but you get my jest, eh?

    Of how disadvantaged views, will create color in our world perceptions. We just have to rise above this(step back from the experience)and put it into perspective. The sameness with which all of us have in this humanistic valuation of character and such, arising from a historical past. Are your words your own in the makeup of advice you give, or is it from the mother and fathers, as parents who speak through you?

    Will We Travel Back (Or Forward) in Time? by RICHARD GOTT III

    Einstein proved we can travel forward by moving near light speed. Backward requires a wormhole, cosmic string and a lot of luck
    Do the laws of physics permit time travel, even in principle? They may in the subatomic world. A positron (the antiparticle associated with the electron) can be considered to be an electron going backward in time. Thus, if we create an electron-positron pair and the positron later annihilates in a collision with another, different electron, we could view this as a single electron executing a zigzag, N-shaped path through time: forward in time as an electron, then backward in time as a positron, then forward in time again as an electron.


    So no, it is not just about going back in time and finding out where we reiterate the views embedded within our own consciousness, but show, what has happened to the individual as a inductive/deductive feature progresses forward in time.

    Do such loops work in our makeup? Trust me when I say it is extremely difficult to change what has already happened in terms of our historical experiences. Yet, the advancement of views in that future when meeting that historical past, is the new mode of experimental basis. Which we will in this case refer to as scientific sensibility? How many reminders do we actually need on what is "reality" and what is fictional?

    So lets say for instance, that in Young's experimental travel of the photon, having going into the nether world, what path had it taken, to become the backdrop on that screen? It had to incorporate signatures and we all understand the Hydrogen spectrum do we not? The Electromagnetic Spectrum?

    Ah so we understand do we about leaving signatures? Yes this is part of the history I am talking about. Have I extended it metaphorically? Yes, you betcha.

    You have to embed this kind of thinking in order for foundational perspectives to change the way you perceive life on a grander scale. Not egotistical evolution, but of one that model consumption does to you about how we open new doorways to insightfulness and change in what we had always perceived?