The animation shows schematically the behavior of the gas molecules in the presence of a gravitational field. We can see in this figure that the concentration of molecules at the bottom of the vessel is higher than the one at the top of the vessel, and that the molecules being pushed upwards fall again under the action of the gravitational field.
Gerard "t Hooft:
The Holographical Mapping of the Standard Model onto the Blackhole Horizon
Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon’s dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.
So we are still looking at the horizon here.
In reference to the God Particle. This was first revealed in the 1991 Fly's eye experiment.
Oh-My-God particle
On the evening of October 15, 1991, an ultra-high energy cosmic particle was observed over Salt Lake City, Utah. Dubbed the "Oh-My-God particle" (a play on the nickname "God particle" for the Higgs boson), it was estimated to have an energy of approximately 3 × 1020 electronvolts, equivalent to about 50 joules—in other words, it was a subatomic particle with macroscopic kinetic energy, comparable to that of a fastball, or to the mass-energy of a microbe. It was most likely a proton travelling with almost the speed of light (in the case that it was a proton its speed was approximately (1 - 4.9 × 10-24)c – after traveling one light year the particle would be only 46 nanometres behind a photon that left at the same time) and its observation was a shock to astrophysicists.
Since the first observation, by the University of Utah's Fly's Eye 2, at least fifteen similar events have been recorded, confirming the phenomenon. The source of such high energy particles remains a mystery, especially since interactions with blue-shifted cosmic microwave background radiation limit the distance that these particles can travel before losing energy (the Greisen-Zatsepin-Kuzmin limit).
Because of its mass the Oh-My-God particle would have experienced very little influence from cosmic electromagnetic and gravitational fields, and so its trajectory should be easily calculable. However, nothing of note was found in the estimated direction of its origin.
Why was it necessary to invoke God here as you did Wolfgang? This was around for some time, and now, such references have found their way into particle collisions perspectives? :)
Quantum gravity is the field devoted to finding the microstructure of spacetime. Is space continuous? Does spacetime geometry make sense near the initial singularity? Deep inside a black hole? These are the sort of questions a theory of quantum gravity is expected to answer. The root of our search for the theory is a exploration of the quantum foundations of spacetime. At the very least, quantum gravity ought to describe physics on the smallest possible scales - expected to be 10-35 meters. (Easy to find with dimensional analysis: Build a quantity with the dimensions of length using the speed of light, Planck's constant, and Newton's constant.) Whether quantum gravity will yield a revolutionary shift in quantum theory, general relativity, or both remains to be seen
One needs to keep perspective on what is happening here, and as a layman, it is extremely difficult. Yet, do I seem to understand what these season vets are doing? More then just reading the NYT times for sure :)