Wednesday, October 12, 2005

Microstate Blackhole Production



I thought it important that some clarity be brought to this subject. So by bringing some information together that I had been thinking about, I would blog it.



Horatiu is referring to a mathematical similarity between the physics of the real world, which govern RHIC collisions, and the physics that scientists use to describe a theoretical, “imaginary” black hole in a hypothetical world with a different number of space-time dimensions (more than the four dimensions — three space directions and time — that exist in our world). That is, the two situations require similar mathematical wrangling to analyze. This imaginary, mathematical black hole that Horatiu compares to the RHIC fireball is completely different from a black hole in the real universe; in particular, it cannot grow by gobbling up matter. In other words, and because the amount of matter created at RHIC is so tiny, RHIC does not, and cannot possibly, produce a true, star-swallowing black hole.


Unfortunately, all of this is overstated. At RHIC we don't make a "real" black hole, in the sense envisioned by Einstein's General Theory of Relativity. Rather, Nastase's point of view is that RHIC collisions can be described by a "dual" black hole. But what does "dual" mean in this context? It's not "two-ness" in any sense, but rather indicates that one can write down a theory which describes the collision as a black hole, but in a completely different world than that we see around us. To make his model work, he (and many other researchers who are exploring this direction) make a calculation of a black hole in 10 dimensions in order to describe difficult (but gravitationally benign) aspects of the strong interaction in 4 dimensions.

This is not to undersell how interesting RHIC collisions are: if we in fact can use this "dual black hole" language to describe the collisions we are making daily, this may be a real advance in our understanding. But no-one I have ever spoken to has suggested that this black hole can or does act like a traditional black hole in our observed universe (although this possibility has been considered, and has been generally discounted as an implausible scenario).


Missing Energy

Given the dearth of knowledge about gravity in the subcentimeter range, the group is looking for any kind of deviation from expectations, not just extradimensional effects, he says. Nonetheless, the excitement about extra dimensions helps spur the group on, Price says.

If the strength of gravity takes a sharp turn upward at around 1 TeV, as the Stanford-Trieste scenario implies, an opportunity opens for testing this theory also in accelerators. Collisions at such energies could produce gravitons in large numbers, and some of these particles would immediately vanish into the extra dimensions, carrying energy with them. Experimenters would look for an unusual pattern of so-called missing energy events.

This and more subtle effects of extra dimensions could show up at existing accelerators, such as LEP and the Tevatron at Fermilab, only if the dimensions have scales nearly as big as a millimeter. The powerful LHC will greatly improve the chances for detecting missing energy events and other prominent extradimension effects.



In 1930 Wolfgang Pauli proposed a solution to the missing energy in nuclear beta decays, namely that it was carried by a neutral particle This was in a letter to the Tubingen congress. Enrico Fermi in 1933 named the particle the "neutrino" and formulated a theory for calculating the simultaneous emission of an electron with a neutrino. Pauli received the Nobel Prize in 1945 and Fermi in 1938. The problem in detection was that the neutrinos could penetrate several light years depth of ordinary matter before they would be stopped.


Dissident:
If you perform an experiment in which some of the energy you put in seems to disappear somewhere, unaccounted for, then yes, you have some explaining to do. Conservation of energy is not something we’d give up lightly; rewriting all those textbooks would be exhausting… but large extra dimensions would certainly not top the list of things to consider.

First of all, “missing energy” is a normal feature of collider experiments, since you can’t expect to catch all the stuff that comes out of them. You have two particle beams banging into each other inside a tunnel of finite width; any decay products flying off into the tunnel are lost. Around the collision point, you have detectors which, while huge and most impressive, also have blind angles and - most importantly - finite size.




Stanford’s Savas Dimopoulos: New Dimensions in Theoretical Physics

Our new picture is that the 3-D world is embedded in extra dimensions,” says Savas Dimopoulos of Stanford University. “This gives us a totally new perspective for addressing theoretical and experimental problems.



The machine, dubbed ATLAS (A Toroidal LHC ApparatuS), is one of four facilities to be located at a powerful accelerator, the Large Hadron Collider (LHC), now under construction near Geneva, in Switzerland

Tuesday, October 11, 2005

Some Distant Bounding Surface



I mean when I referred to fifth dimensional views you know that the computer screen includes not only it's functionability in relation to science, but adds that bit of extended flavour to model construction we call imaging right?


a) Compactifying a 3-D universe with two space dimensions and one time dimension. This is a simplification of the 5-D space­time considered by Theodor Kaluza and Oskar Klein. (b) The Lorentz symmetry of the large dimension is broken by the compactification and all that remains is 2-D space plus the U(1) symmetry represented by the arrow. (c) On large scales we see only a 2-D universe (one space plus one time dimension) with the "internal" U(1) symmetry of electromagnetism.


Remember Brian Greene's is from 2001. What might have change since then with Brian Greene and his views about about that distant bounding surface. Of course to many of us it is a brane world recognition.



If we did not recognize what advancements might have been accomlished with mathematics and the fifth dimensional views on our computer screens? Could we ever really talk about such idealizations, without understanding that there are ways to look at this, and reductional valuations taken from fifth dimensional views down to 2? Our computer screen. Of course Brian Greene has included the thickness of the bounded surface, so, time had to be inclusive here would it not?:)

The Edge

Physics and everything we know in the world around us may really be tied to processes whose fundamental existence is not here around us, but rather exists in some distant bounding surface like some thin hologram, which by virtue of illuminating it in the right way can reproduce what looks like a 3-dimensional world. Perhaps our three dimensional world is really just a holographic illumination of laws that exist on some thin bounding slice, like that thin little piece of plastic, that thin hologram. It's an amazing idea, and I think is likely to be where physics goes in the next few years or in the next decade, at least when one's talking about quantum gravity or quantum string theory.

So how can such a thing as Brian calls a Bounded surface and relate it's thinness to a vast capability? Also in the cosmic perspective, to have brane collisions illustrated by Steinhardt, become much more then our views held to the surface mathematically inclined. To be revealled, in stringy dynamics, at the basis of our viewing?

Such creation slotted into the time frames of this beginning, is stil questioning the valuation of what existed before stringy ideas manifest, so what pray tell, could have ever been "the sun" in behind, that illuminates "shadows" on the wall?

The Randall-Sundrum braneworld model is characterized by ordinary matter being confined to a hypersurface embedded in a higher-dimensional manifold through which gravitational signals may propagate


Physics strings us along by Margaret Wertheim of LAtimes.com

In the latest, hottest Big Science tome — the delightfully titled "Warped Passages" — Harvard physicist Lisa Randall describes the idea that the universe we see around us is but one tiny part of a vast reality that may include an infinite number of other universes. Randall is an expert on both cosmology and that arcane branch of particle physics known as string theory. By marrying the two fields, she and her colleagues have formulated a picture in which our universe may be seen as a soap-film-like membrane (a "braneworld") sitting inside a much larger space: the bulk. According to general relativity, the universe we live in has four dimensions: three of space and one of time. Randall's work extends this framework and posits the existence of a fifth dimension. The fifth dimension is the bulk, and within its immeasurably expanded space, there is no reason to assume that ours is the only cosmos.


So there are amazing leaps here then to new world recognitions of ideologies that formed from where?

John Ma Pierre:
What is remarkable is that much of the recent progress in understanding non-perturbative aspects of string theory and supersymmetric gauge theories has been made in parallel, using each to gain knowledge and insights about the other. There are various reasons for this intimate connection between supersymmetric gauge theories and string theory. One is that supersymmetric gauge theories arise as low energy effective descriptions of compactified string theories in limits where gravity decouples. Another reason is that superstring theories can be formulated in backgrounds that contain D-branes, and supersymmetric gauge theories serve as effective world volume theories for these D-branes. In addition to these direct examples, it is sometimes the case that intuition about non-perturbative physics that is gained in one area can be directly applied to the other. An example of this is the guiding principle that singularities in the quantum moduli space of a low energy effective theory signal the appearance of new massless states. This was seen to be a generic phenomena in supersymmetric gauge theories and was subsequently applied to the resolution of conifold singularities by massless black holes in string theory.


Wow! More then five!:) Okay reference was made by Sean on a one liner about magic and his meeting in a bar. Where a sister as the science teacher explains this statement. Well it has been gathered up for consumption in other areas, so of course we have to explain this as now this conversation is leading other talks to consider more issues about what began as a mystery has no place in the developement of science.

I am a little dismayed by this, because anomlistic features without explanation would seem as such, while it is true, that it can be expalined afterwards, once we understood how something from the 21st century dropped into our laps for consideration:) We know what this means right? It had to be coisstent and logicall so repeatability can hav eother hands , for verification. How did you expalin it and lead them hwere one had not gone before?

That sounded like Startrek for a minute there:)

Monday, October 10, 2005

A Supersymmetrical Valuation of Where things Began

Of course "phase transitions" and "asymmetrical realizations" had to arise from developmental processes in the universe? One had to know, in what sphere such developemental would take place, and if we circumvented all these chinese boxes or Russina dolls to exemplifed allegorical comments about consciousness. It had to follow a Gr perspective, and, a quantum mechanical one? "Topo-sense" as to developing topolgical models within consciousness, as a well as, models in the developing universe as a GR sense? IMagine to then such toposense further develped from theidealizatin of quantum views such physicla actions taken from cosmological proportions and reduced to probability functions entailed in our mental structure, then indeed we had transgressed our limitation to a feeling?:)


The theory of relativity predicts that, as it orbits the Sun, Mercury does not exactly retrace the same path each time, but rather swings around over time. We say therefore that the perihelion -- the point on its orbit when Mercury is closest to the Sun -- advances.


Imagine for a moment about that such a "momentus occasion", as well we learn to see the developmental process of circles(orbits) and Mercuries orbital patterns (a daisey) and got this general sense of reduced orbital pattern decay of rotatng binary pulsar systems as revealled by Taylor and Hulse.

We got to know "information release" from the distances involved, and could calculated when they would combined? This is a "prediction then" based on, a viable measure, not only in terms of that distance valuation, but of how we might arrive at it other then in astronmical viewing. What would be revealled in LIGO application?

Atiyah's comments are important here I think.

If theory is the role of the architect, then such beautiful proofs are the role of the craftsman. Of course, as with the great renaissance artists, such roles are not mutually exclusive. A great cathedral has both structural impressiveness and delicate detail. A great mathematical theory should similarly be beautiful on both large and small scales.


Assymetrical views would have revealled mandalic interpretations very distinctive of conscious awareness, and unfoldment in design. This had to have a geometric and foundational perspective that arose from the expansitory valution of brane world idealizations? As well as, the deeper recesses of our own minds?

Finally, we also hope that this series furthers the discussion regarding the nature and function of 'the mandala'. In the spiritual traditions from which Jung borrowed the term, it is not the SYMMETRY of mandalas that is all-important, as Jung later led us to believe. It is their capacity to reveal the asymmetry that resides at the very heart of symmetry. By offering a new view about how consciousness itself is structured - in a fundamentally paradoxical fashion - and how these structurings are reflected in principles according to which the mandala is organized, we are able in this series to show how personality itself may be thought of as having an essentially 'liminocentric' design.


One had to be able to recognize this "model apprehension" and speak to it directly in experience. I could do that because of my explorations. Am I adapting to new methods of model developements? For sure. :)



"Luminousity" as enlightenment could possibly help push back the veil, if we could probably do this?

Sunday, October 09, 2005

Bubble World and Geometrodynamics



As I related in the blog entry comments of "trademarks of the geometers II" it was from that perspective the relation developed on plate 47 and indications of YING Yang interconnectivity to oriental philosophy that I encouraged bubble idealizations.



I think he(meaning site linked on new views) understood immediately the reference I made to the "Taoist symbol" and the relation to the Calabi Yau, in terms of the rotation being complete. No singularity, but the turning inside out of the state of the current universe to expressions detailed in the culmination of such gravitational collapses. I had to look for examples like this.

This idea was based on example lead from geometrical insight, I had encouraged from the understanding of that same gravitational collapse. This was derived from correlative attempts to encourage such "geometrical dynamics" revealled in sonoluminence examples, set out in experimental fashion, that physics might have encouraged, and then related back to the maths.

I never really understood this inclination of myself, but drawing examples in society seemed to be the way of it, so that the understanding could have found examples. It couldn't be that abstract that we could not find some relation, could it?

It seems I cannot locate my list references to the idea of gravitational collpase so I will have to refill this article with links to help direct the attention I gained from observing this inherent geometrical inclination .


The glass cell used by Fink and colleagues, surrounded by the eight high-frequency sound generators
The team believes this method can be modified to make the bubble collapse even faster, which would lead to greater light intensities. This would allow physicists to study the relationship between pressure, light intensity and temperature in sonoluminescence in more detail


So the point here is not to take sonoluminece as "the process" but of looking deeper into the geoemtrical design that ask blackhole creation, to give indicators as to the depth and contact glast might reveal from a inception point, with viable measures detailled through "calorimetric evidence" and design.

From a cosmological standpoint, this helped me to see the values of the curvature parameters that exist at the outer most edge of our cosmos. Is it right I am not sure?

Saturday, October 08, 2005

Mathematical Models

"Backwards" might mean, from a "5d understanding" to a three dimensional fabrication. You had to understand how the 5d world is explained here, before judgement is cast.

While I would like nothing more then to cater to the struggles of good professors, to the aims they had set for themselves, it has come to me, that mathematic modelling is culminative. Where does this point too?

If indeed a good understanding has been established, regardless of string theory or any association for that matter, this stand alone item on Langlands or what ever one might associated it too, would of itself, painted it's own picture and further associations, from a basis and exposition of that mathemtical derivative.

It does not have to be associated it either to historical figures (like Plato), other then the ones we trace to the orignation and factors that brought other areas of mathematics together. This should be readily available, by doing searches which I did. Although I sahl say there is much that needs to be resolved, in our determinations of truth. I am working on understanding this here.

But then to take it further, I wanted to illustrate this point just a little more on imaging.

Thomas Banchoff has set this straight in terms of modelling in computerization and what it can do for us in 5D expressions? While in the Wunderkammern of this site such model although concretize in form have relative associations in computerization value much like the model of the Klein bottle exemplified of itself in acme products.


x = cos(u)*(cos(u/2)*(sqrt_2+cos(v))+(sin(u/2)*sin(v)*cos(v)))

y = sin(u)*(cos(u/2)*(sqrt_2+cos(v))+(sin(u/2)*sin(v)*cos(v)))

z = -1*sin(u/2)*(sqrt_2+cos(v))+cos(u/2)*sin(v)*cos(v)

or in polynomial form:

Yep, no doubt about it: Your Acme's Klein Bottle is a real Riemannian manifold, just waiting for you to define a Euclidean metric at every point.



Felix Klein
When Klein became a Professor in Leipzig in 1880, he immediately started to acquire mathematical models and establish a model collection. Klein was a geometer and used these plaster models in his university lectures. Model collections became very popular in mathematics departments world-wide. When he then moved to Göttingen, Klein, together with his colleague Hermann Amandus Schwarz, expanded his new department's collection of mathematical models and instruments so much that at peak times up to 500 models were on permanent display. When you think that a model could cost about £150, this was a major investment in education.




This idea is and has been lost to the model archives of the Wunderkammern respectively and such a resurgence is making it's way back. Such O ->an outward expression is no less the road taken in artistic expression entitled, "When is a Pipe a pipe," exemplified in the manifestation of mathematical modelling.

Our computer screen although reduced to two dimensional factors, is a fifth dimensional expression, in terms of our visulization capability. The work then is translation of computerization, to imaging.

The "Torso" once mathematically derived, and help enlisted in the Cave, brought mathematical equation through a complete rotation in the Calabi Yau. Until then, the efforts relied on by men/woman whose visualization capabiltes, were equivalent to 5d imaging?

So if I ask, if there is a image of a culminative mathe, without out this the understanding is not complete.

Langlands Duality


Appointed to Princeton as an instructor after completing his doctoral studies, Langlands taught there for seven years and was promoted to associate professor. He spent 1964-65 at the University of California, Berkeley as a Miller Foundation Fellow and an Alfred P Sloan Fellow. Then in 1967 he returned to Yale University as a full professor. However Langlands spent 1967-68 visiting in Ankara, Turkey having an office next to that of Cahit Arf. After five years at Yale he returned again to Princeton, this time as professor of mathematics at the Institute for Advanced Study. He has remained at the Institute for Advanced Study since his appointment there in 1972.


In 1967 he wrote a letter to Weil which contains profound mathematical ideas which continue to drive a whole area of mathematical research. The letter was 17 pages hand-written and sent in January 1967. It sketched what soon became known as "the Langlands conjectures". Weil had the letter typed and this typed version circulated widely among mathematicians interested in the topics. Casselman writes in [3] that the letter contained:-


... a collection of far-reaching and uncannily accurate conjectures relating number theory, automorphic forms, and representation theory. Theses have formed the core of a program still being carried out, and have come to play a central role in all three subjects.


The work of Robert Langlands

....is currently a Professor at the Institute for Advanced Study in Princeton. He has won several awards recognizing his outstanding contributions to the theory of automorphic forms, among them an honorary degree from the University of British Columbia in 1985.


Letter to André Weil from January, 1967
Dear Professor Weil,

While trying to formulate clearly the question I was asking you before Chern’s talk I was led to two more general questions. Your opinion of these questions would be appreciated. I have not had a chance to think over these questions seriously and I would not ask them except as the continuation of a casual conversation. I hope you will treat them with the tolerance they require at this stage. After I have asked them I will comment briefly on their genesis.


It might be good to begin from statements made from Weil and this letter circulated. It might help set up early history and thoughts and ideas lead into the Langland Duality Lubos has renamed. References made by Lubos today and following correspondance by Peter Woit. Lubos Motl, opens his blog entry with following link.

Gauge Theory and the Geometric Langlands Program by Edward Witten
August 10th, 2005
Based on notes by Ram Sriharsha

Introduction
The Langlands program of number theory, or what we might call Langlands duality, was proposed in more or less its present form by Robert Langlands, in the late 1960s. It is a kind of unified scheme for many results in number theory ranging from quadratic reciprocity, which is hundreds of years old, to modern results such as Andrew Wiles’ proof of Fermat’s last theorem, which involved a sort of special case of the Langlands program. For today, however, I will not assume any prior knowledge of the Langlands program.


Langlands duality , by Lubos Motl
I am using Witten's favorite word "duality" instead of "program" because it is a bit more concrete; it's puzzling why the mathematicians haven't realized that their terminology can be sharpened. I encourage everyone to respect that the official terminology has changed to a "duality" right now.


Notes for Witten Lecture by Peter Woit
Witten gave a lecture on the beach at Stony Brook on the topic of gauge theory and the Langlands program two months ago, and lecture notes are now available. Lubos Motl has a posting about this, where he promotes the idea that people should stop referring to the “Langlands Program” and just refer to “Langlands duality”.



Langlands Program and Physics by Peter Woit
One of my minor hobbies over the years has been trying to understand something about the Langlands conjectures in number theory, partly because some of the mathematics that shows up there looks like it might be somehow related to quantum field theory. A few days ago I was excited to run across a web-page for a workshop held in Princeton earlier this year on the topic of the Langlands Program and Physics. Notes from some of the lectures there are on-line.


Geometric Langlands Program
This program is dedicated to the investigation of the geometric Langlands, its relationship to other areas of mathematics, and its relationship to physics;


THE LANGLANDS PROGRAM AND PHYSICS NOTES BY MATT SZCZESNY

The following are notes from the workshop on connections between the Langlands correspondence and Physics that took place at the Institute for Advanced Study at the beginning of March, 2004. Its purpose was to bring together researchers in representation theory and string theory to explore the question of whether it is possible to give a physical perspective on the geometric Langlands correspondence. Certain parts of geometric Langlands make use of tools arising in Conformal Field Theory (CFT), and so provide a point of contact between the two fields.

Friday, October 07, 2005

Raphael Rooms

Room of the Segnatura

Virtual Tour of this Room


The Room of the Segnatura contains Raphael's most famous frescoes. Besides being the first work executed by the great artist in the Vatican they mark the beginning of the high Renaissance. The room takes its name from the highest court of the Holy See, the "Segnatura Gratiae et Iustitiae", which was presided over by the pontiff and used to meet in this room around the middle of the 16th century. Originally the room was used by Julius II (pontiff from 1503 to 1513) as a library and private office. The iconographic programme of the frescoes, which were painted between 1508 and 1511, is related to this function.


  • Room of Constantine

  • Room of Heliodorus

  • Room of the Segnatura

  • Room of the Fire in the Borgo



  • The four rooms known as the Stanze of Raphael form part of the apartment situated on the second floor of the Pontifical Palace that was chosen by Julius II della Rovere, the Pope. as his own residence and used also by his successors. The picturesque decoration was carried out by Raphael and his pupils between 1508 and 1524.





    The Raphael Rooms (also called the Raphael Stanze) in the Palace of the Vatican are papal apartments with frescoes painted by Italian artist Raphael.

    The Rooms were originally intended as a suite of apartments for Pope Julius II. He commissioned the relatively young artist Raffaello Sanzio and his studio in 1508 or 1509 to repaint the existing interiors of the rooms entirely. It was possibly Julius' intent to outshine the apartments of his predecessor (and rival) Pope Alexander VI as the Raphael Rooms are directly above Alexander's Borgia Apartment.

    The Rooms are on the third floor, overlooking the south side of the Belvedere Courtyard. Running from East to West, the rooms are called:


    This picture by Raphael is very important to me, as you must be aware, by the opening at the very head of this blog, and by the picture I cut from Raphael's painting. It shows myself(Plato:) and Aristotle.

    I mentioned that ">one thing" before remember. How this insighted Curly 's touching philosophy about that "one thing" and the search for Gold.

    Well, such depictions taken I gathered from the painting, as well as, what I gathered from what I thought Raphael was saying. You noticed of course that they are all under this Arche? Yes, this was very symbolic to me.

    So indeed, what is truth?

    Justified true belief

    The Theaetetus account of Plato further develops the definition of knowledge. We know that, for something to count as knowledge, it must be true, and be believed to be true. Plato argues that this is insufficient, and that in addition one must have a reason or justification for that belief.

    Plato defined knowledge as justified true belief.

    One implication of this definition is that one cannot be said to "know" something just because one believes it and that belief subsequently turns out to be true. An ill person with no medical training but a generally optimistic attitude might believe that she will recover from her illness quickly, but even if this belief turned out to be true, on the Theaetetus account the patient did not know that she would get well, because her belief lacked justification.

    Knowledge, therefore, is distinguished from true belief by its justification, and much of epistemology is concerned with how true beliefs might be properly justified. This is sometimes referred to as the theory of justification.


    Well to help direct the truth to bare on what these sources are, I thought it important to continue to bring perspective not only to the tidbits of images that are floating around this site, and those of others, but brings the significance of such "gatherings" to Raphael's painting and the place it rests.

    So anyway, a little more clarity, with a "slight twist" of my humour.

    Projective Geometries

    Action at a Distance

    Now ths statement might seem counterproductive to the ideas of projective geometry but please bear with me.


    In physics, action at a distance is the interaction of two objects which are separated in space with no known mediator of the interaction. This term was used most often with early theories of gravity and electromagnetism to describe how an object could "know" the mass (in the case of gravity) or charge (in electromagnetism) of another distant object.

    According to Albert Einstein's theory of special relativity, instantaneous action-at-a-distance was seen to violate the relativistic upper limit on speed of propagation of information. If one of the interacting objects were suddenly displaced from its position, the other object would feel its influence instantaneously, meaning information had been transmitted faster than the speed of light.


    Test of the Quantenteleportation over long distances in the duct system of Vienna Working group Quantity of experiment and the Foundations OF Physics Professor Anton Zeilinger

    Quantum physics questions the classical physical conception of the world and also the everyday life understanding, which is based on our experiences, in principle. In addition, the experimental results lead to new future technologies, which a revolutionizing of communication and computer technologies, how we know them, promise.

    In order to exhaust this technical innovation potential, the project "Quantenteleportation was brought over long distances" in a co-operation between WKA and the working group by Professor Anton Zeilinger into being. In this experiment photons in the duct system "are teleportiert" of Vienna, i.e. transferred, the characteristics of a photon to another, removed far. First results are to be expected in the late summer 2002.



    One of the first indications to me came as I looked at the history in regards to Klein's Ordering of Geometries. Now I must admit as a layman I am very green at this understanding but having jumped ahead in terms of the physics involved, its seems things have been formulating in my head, all the while, this underatnding in terms of this "order" has been lacking.

    In Euclidean geometry, the basic notions are distances and angles. The transformations that preserve distances and angles are precisely the rigid motions. Effectively, Klein's idea is to reverse this argument, take the group of rigid motions as the basic object, and deduce the geometry. So a legitimate geometric concept, in Euclidean geometry, is anything that remains unchanged after a rigid motion. Right-angled triangle, for example, is such a concept; but horizontal is not, because lines can be tilted by rigid motions. Euclid's obsession with congruent triangles as a method of proof now becomes transparent, for triangles are congruent precisely when one can be placed on top of the other by a rigid motion. Euclid used them to play the same role as the transformations favored by Klein.

    In projective geometry, the permitted transformations are projections. Projections don't preserve distances, so distances are not a valid conception projective geometry. Elliptical is, however, because any projection of an ellipse is another ellipse.


    So spelt out here is one way in which this progression becomes embedded within this hisotry of geometry, while advancing in relation to this association I was somewhat lifted to question about Spooky action at a distance. WEll if such projective phase was ever considered then how would distance be irrelevant(this sets up the idea then of probabilistic pathways and Yong's expeirment)? There had to be some mechanism already there tht had not been considered? Well indeed GHZ entanglement issues are really alive now and such communication networks already in the making. this connection raised somewhat of a issue with me until I saw the the phrase of Penrose, about a "New Quantum View"? Okay we know these things work very well why would we need such a statement, so I had better give the frame that help orientate my perspective and lead to the undertanding of spin.



    Now anywhere along the line anyone can stop such erudication, so that these ideas that I am espousing do not mislead. It's basis is a geometry and why this is important is the "hidden part of dirac's mathematics" that visionization was excelled too. It is strange that he would not reveal these things, all the while building our understanding of the quantum mechanical nature of reality. Along side of and leading indications of GR, why would not similar methods be invoked as they were by Einstein? A reistance to methodology and insightfulness to hold to a way of doing things that challenegd Dirac and cuased sleepless nights?



    Have a look at previous panel to this one.

    While indeed this blog entry open with advancements in the Test in Vienna, one had to understadn this developing view from inception and by looking at Penrose this sparked quite a advancement in where we are headed and how we are looking at current days issues. Smolin and others hod to the understnding f valuation thta is expeirmentally driven and it is not to far off to se ehosuch measure sare asked fro in how we ascertain early universe, happening with Glast determinations.

    Quantum Cryptography

    Again if I fast forward here, to idealization in regards to quantum computational ideas, what value could have been assigned to photon A and B, that if such entanglement states recognize the position of one, that it would immediately adjust in B?

    Spooky At any Speed
    If a pair of fundamental particles is entangled, measuring an attribute of one particle, such as spin, can affect the second particle, no matter how far away. Entanglement can even exist between two separate properties of a single particle, such as spin and momentum. In principle, single particles or pairs can be entangled via any combination of their quantum properties. And the strength of the quantum link can vary from partial to complete. Researchers are just beginning to understand how entanglement meshes with the theory of relativity. They have learned that the degree of entanglement between spin and momentum in a single particle can be affected by changing its speed ("boosting" it into a new reference frame) but weren't sure what would happen with two particles.



    So there is this "distance measure" here that has raised a quandry in my mind about how such a projective geometry could have superceded the idea of "spooky things" and the issues Einstein held too.

    So without understanding completely I made a quantum leap into the idealization in regards to "logic gates" as issues relevant to John Venn and introduced the idea around a "relative issues" held in my mind to psychological methods initiated by such entanglement states.

    As far a one sees here this issue has burnt a hole in what could have transpired within any of us that what is held in mind, ideas about geomtires floated willy Nilly about. How would such "interactive states" have been revealled in outer coverings.

    The Perfect Fluid

    Again I am fstforwding here to help portray question insights that had been most troubling to me. If suych supersymmetrical idealizations arose as to the source and beginning of existance how shall such views implement this beginning point?

    So it was not to unlikely, that my mind engaged further problems with such a view that symmetry breaking wouldhad tohave signalled divergence from sucha state of fluid that my mind encapsulated and developed the bubble views and further idealizations, about how such things arose from Mother.

    What would signal such a thing as "phase transitions" that once gauged to the early universe, and the Planck epoch, would have revealled the developing perspective alongside of photon developement(degrees of freedom) and released information about these early cosmological events.

    So I have advance quite proportinately from the title of this Blog entry, and had not even engaged the topological variations that such a leading idea could have advanced in our theoretcical views of Gluonic perceptions using such photonic ideas about what the tragectories might have revealled.

    So indeed, I have to be careful here that all the while my concepts are developing and advanced in such leaps, the roads leading to the understanding of the measure here, was true to form and revalled issues about things unseen to our eyes.

    It held visionistic qualities to geometric phases that those who had not ventured in to such entanglement states would have never made sense of a "measure in the making." It has it's limitation, though and why such departures need to be considered were also part of my question about what had to come next.

    Thursday, October 06, 2005

    Science and the Mind: Sir Roger Penrose



    Above picture, belongs to this article and titled above, of frames that Sir Roger Penrose wrote in 1999.

    Roger Penrose, a professor of mathematics at the University of Oxford in England, pursues an active interest in recreational math which he shared with his father. While most of his work pertains to relativity theory and quantum physics, he is fascinated with a field of geometry known as tessellation, the covering of a surface with tiles of prescribed shapes.


    Being reminded of Roger Penrose I am actually going to contribute this blog entry to him, and sources that I had collected.

    Twistor Theory


    The motivation and one of the initial aims of twistor theory is to provide an adequate formalism for the union of quantum theory and general relativity. Twistors are essentially complex objects, like wavefunctions in quantum mechanics, as well as endowed with holomorphic and algebraic structure sufficient to encode space-time points. In this sense twistor space can be considered more primitive than the space-time itself and indeed provides a background against which space-time could be meaningfully quantised.

    Twistor Program

    http://twistor-theory.rdegraaf.nl/index.asp?sND_ID=436182

    R. Penrose and M. A. H. MacCallum, Phys. Reports. 6C (1972) p. 241


    pages:

    242-243,244-245,246-247,248-249,250-251,252-253,254-255,256-257,258-259,260-261,262-263,264-265,266-265,268-269,270-271,272-273,274-275,276-277,278-279,280-281,282-283,284-285,286-287,288-289,290-291,292-293,294-295,296-297,298-299,300-301,302-303,304-305,306-307,308-309,310-311,312-313,314-315,316-317,318-320,320-322,322-324,324-326,326-328,328-330,330-332

    or download the unix tar-ball to get all the pages at once. (WinZip is able to unzip this archive)



    Sir Roger Penrose



  • Science and the Mind
  • Einstein's Equation and Twistor Theory
  • Gravitationally Induced Quantum State Reduction
  • Quantum State reduction as a real phenomenon
  • Schrödinger's Cat in Space

    Fedja Hadrovich
    In the past 30 years a lot of work has been done on developing twistor theory. Its creator, Roger Penrose, was first led to the concept of twistors in his investigation of the structure of spacetime and it was he who first saw the wide range of applications for this new mathematical construct. Yet 30 years later, twistors remain relatively unknown even in the mathematical physics community. The reason for this may be the air of mystery that seems to surround the subject even though it provides a very elegant formalism for both general relativity and quantum theory. These notes are based on a graduate lecture course given by R. Penrose in Mathematical Institute, Oxford, in 1997 and should give a brief introduction to the basic definitions. Let us begin with the building blocks: spinors.

    R. Penrose, F. Hadrovich
    Twistor Theory


    The motivation and one of the initial aims of twistor theory is to provide an adequate formalism for the union of quantum theory and general relativity. Twistors are essentially complex objects, like wavefunctions in quantum mechanics, as well as endowed with holomorphic and algebraic structure sufficient to encode space-time points. In this sense twistor space can be considered more primitive than the space-time itself and indeed provides a background against which space-time could be meaningfully quantised.


    Lecture I
    Lecture II
    Lecture III
  • Rapping Our Way to Einstein



    Now you know us platoists and our academy had issues about music. The influence it has in soothing it's way into the minds heart of hearts. So I thought, why not, make an exception here, because I like the example associated of "the pretty girl and the hot stove", taken to a new level of conceptualization in society.

    A Chladni plate consist of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and antinodes set up form a complex but symmetrical pattern over its surface. The positions of these nodes and antinodes can be seen by sprinkling sand upon the plates;


    Although, like the segregation of a racial divide and people, I do not like the innuendo's of association, by gender either. I thought the feelings here, were more important and explained things in a way that help to define the "emotive suffering" and "mental fleetingness of happiness," in ways that we are not accustomed too.

    For me this is a philosophical difference, much as one would see the value of music as analogy of the field and the allowable concept of penetration(holes), deep into consciousness. It would not be unfair to see mental abstractions of mathematics held in this light, devoid of any "emotional connotation?"


    DJ Vader told BBC Radio 4's Today programme he had not thought much of physics at school and had spent most of his time playing truant.

    But he had been inspired by Einstein's explanation of his theory, which reads: "When a man sits with a pretty girl for an hour it seems like a minute.

    "But let him sit on a hot stove for a minute and its longer than any hour. That's relativity."

    DJ Vader said: "At the time I was thinking of me and my girlfriend being together and definitely it does go really quickly."



    Rap the key to explain relativity