Thursday, October 06, 2005

Science and the Mind: Sir Roger Penrose



Above picture, belongs to this article and titled above, of frames that Sir Roger Penrose wrote in 1999.

Roger Penrose, a professor of mathematics at the University of Oxford in England, pursues an active interest in recreational math which he shared with his father. While most of his work pertains to relativity theory and quantum physics, he is fascinated with a field of geometry known as tessellation, the covering of a surface with tiles of prescribed shapes.


Being reminded of Roger Penrose I am actually going to contribute this blog entry to him, and sources that I had collected.

Twistor Theory


The motivation and one of the initial aims of twistor theory is to provide an adequate formalism for the union of quantum theory and general relativity. Twistors are essentially complex objects, like wavefunctions in quantum mechanics, as well as endowed with holomorphic and algebraic structure sufficient to encode space-time points. In this sense twistor space can be considered more primitive than the space-time itself and indeed provides a background against which space-time could be meaningfully quantised.

Twistor Program

http://twistor-theory.rdegraaf.nl/index.asp?sND_ID=436182

R. Penrose and M. A. H. MacCallum, Phys. Reports. 6C (1972) p. 241


pages:

242-243,244-245,246-247,248-249,250-251,252-253,254-255,256-257,258-259,260-261,262-263,264-265,266-265,268-269,270-271,272-273,274-275,276-277,278-279,280-281,282-283,284-285,286-287,288-289,290-291,292-293,294-295,296-297,298-299,300-301,302-303,304-305,306-307,308-309,310-311,312-313,314-315,316-317,318-320,320-322,322-324,324-326,326-328,328-330,330-332

or download the unix tar-ball to get all the pages at once. (WinZip is able to unzip this archive)



Sir Roger Penrose



  • Science and the Mind
  • Einstein's Equation and Twistor Theory
  • Gravitationally Induced Quantum State Reduction
  • Quantum State reduction as a real phenomenon
  • Schrödinger's Cat in Space

    Fedja Hadrovich
    In the past 30 years a lot of work has been done on developing twistor theory. Its creator, Roger Penrose, was first led to the concept of twistors in his investigation of the structure of spacetime and it was he who first saw the wide range of applications for this new mathematical construct. Yet 30 years later, twistors remain relatively unknown even in the mathematical physics community. The reason for this may be the air of mystery that seems to surround the subject even though it provides a very elegant formalism for both general relativity and quantum theory. These notes are based on a graduate lecture course given by R. Penrose in Mathematical Institute, Oxford, in 1997 and should give a brief introduction to the basic definitions. Let us begin with the building blocks: spinors.

    R. Penrose, F. Hadrovich
    Twistor Theory


    The motivation and one of the initial aims of twistor theory is to provide an adequate formalism for the union of quantum theory and general relativity. Twistors are essentially complex objects, like wavefunctions in quantum mechanics, as well as endowed with holomorphic and algebraic structure sufficient to encode space-time points. In this sense twistor space can be considered more primitive than the space-time itself and indeed provides a background against which space-time could be meaningfully quantised.


    Lecture I
    Lecture II
    Lecture III
  • Rapping Our Way to Einstein



    Now you know us platoists and our academy had issues about music. The influence it has in soothing it's way into the minds heart of hearts. So I thought, why not, make an exception here, because I like the example associated of "the pretty girl and the hot stove", taken to a new level of conceptualization in society.

    A Chladni plate consist of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and antinodes set up form a complex but symmetrical pattern over its surface. The positions of these nodes and antinodes can be seen by sprinkling sand upon the plates;


    Although, like the segregation of a racial divide and people, I do not like the innuendo's of association, by gender either. I thought the feelings here, were more important and explained things in a way that help to define the "emotive suffering" and "mental fleetingness of happiness," in ways that we are not accustomed too.

    For me this is a philosophical difference, much as one would see the value of music as analogy of the field and the allowable concept of penetration(holes), deep into consciousness. It would not be unfair to see mental abstractions of mathematics held in this light, devoid of any "emotional connotation?"


    DJ Vader told BBC Radio 4's Today programme he had not thought much of physics at school and had spent most of his time playing truant.

    But he had been inspired by Einstein's explanation of his theory, which reads: "When a man sits with a pretty girl for an hour it seems like a minute.

    "But let him sit on a hot stove for a minute and its longer than any hour. That's relativity."

    DJ Vader said: "At the time I was thinking of me and my girlfriend being together and definitely it does go really quickly."



    Rap the key to explain relativity

    Wednesday, October 05, 2005

    Trademarks of the Geometer II

    John g,



    Lubos had some claim about Martian ancestry, but we know that he jests?:)

    So I do not want to use up to much more of Lubos's blog for this conversation even though he pushes the envelope. Perhaps, you will start your own blog?

    Genuis at Work
    (Picture credit: AIP Emilio Sergè Visual Archives)


    Lastly, I have know certain "trademarks of people" like Dirac as "the geometer" is inherent at the foundations of such psychologies(even I like to dabble in model developement ex: John Venn), with current information Peter Woit brought forward, are key indicators to me of visualization capabilties that are every advanced for this abstract world. Clifford demonstrates like a Rorshach Ink blot as an experiment, with the picture on that "blackboard"?

    Wassily Kadinsky

    His art and in composition? As a reference made in the comment section of another artist in realtion to Clifford's article, Wassily came to mind.

    The term "Composition" can imply a metaphor with music. Kandinsky was fascinated by music's emotional power. Because music expresses itself through sound and time, it allows the listener a freedom of imagination, interpretation, and emotional response that is not based on the literal or the descriptive, but rather on the abstract quality that painting, still dependent on representing the visible world, could not provide.


    How would it be possible to extend let's say the idealization to a history of geometries without establishing this basis in thought? There had to be expanded frontiers that would let people develope towards objective goals in science, based on science and herein lies the difficulites with the INKBLOt. As by subjective interpretaion based on current knowledge bases, these views would be very much different then what someone "well trained might see"? Let alone, classify it to any geometric formulation.



    Surely inkblot below is a mask? I have one in relation, drawn from the antiquities of evolution. If you ever visit the Drumheller museum, in Alberta Canada, you'll identify it for sure?:) So what is this "projection" based on?



    Keep it simple

    I like to keep it simple, and fragmentary indications of my blog entries can be accumulative of something deeper and very revealing about such a nature of these geometers I like to talk about. I had to learn this history in order to understand where we had been taken with Einstein's General Relativity. Another one, who understood after Grossman that such geoemters were needed to bring consistancy to the undertanding of theoretical developement.

    I would not have gotten this far without bloggists, like Lubos, Peter, Sean, Clifford, Mark and the rest of the Cosmic Variance group, who are most kind in helping us lay people to recognize issues in ways and helping to develope info according to the academic world. This has been truly a grace.

    Entries of my own, would have past as incoherent states of unfamiliar words, on a very simple level dealing with the societal world we live in. I now find comfort, that I am not so strange, in this geometer sense.

    Have I excelled myself? On the contrary, its about learning about ourselves and who we are, is all. If it past the stage of pure mathematics( towards that center), then why would we not see that this outward development had some psychological model in which to adorn oneself in this mandalic sense.

    Sean, makes brief link entree in that blog of Cliffords on Cosmic Variance.

    Indeed, this is where such models helped me understand from a Jungian sense, that such a map had to exist, and models built. This can only come from experience, and from the direction of coming from that center. Why I ask Lubos, or anyone for that matter, about where ideas come from. Here you would see such a flavour and distinction in Plato's ideology, about what could manifest in any mind, and not just any one select part of this society.

    No doubt, that like any fisherman's hook, you would need to have some valuation and inclination to manifest. As you develope through any model apprehension, where you could add more ideas to the pot. For a further invitation for probilities to manifest in our everyday conversations. Are some of these "inductions and deductions" always right? Of course not, and this is where our education comes in, and the saving grace of bloggists in general.

    Who would of thought by using "internet world" the bloggists could have ever reached the "periphery" of this society? I'll intoduce you to another foreigner whose concept defintiely challenges the mind in this bubble sense. In a way I helped him to develope further, and him, I.

    Saturday, October 01, 2005

    The Succession of thinking

    How far indeed the the imagination can be taken to see such processes enveloped in how we percieve these changes all around us. Why is gravity so weak, here and now. I have jumped ahead but will lead into it from the other end of this article.

    Never before had I encountered the reasoning of imaging behind the work of "conceptual frameworks" now in evidence. In how a mathmatician, or a scientist, like Einstein or Dirac, had some basis at which the design, of all that we endure, would have its's counterpart in this reality as substantial recognition of what must be done.

    I don't think anyone now in the scientific arena needs to be reminded about what it takes to bring theory into the framework of cultural and societal developement, to see how it all actually is working. On and on now, I see this reverberating from Lisa Randall to all scientists that we encounter from one blog to the next, a recognition and developement of this visualization ability.

    That Famous Equation and You , By BRIAN GREENE Op-Ed Contributor in New York Times, Published: September 30, 2005


    Brian Greene:
    After E = mc², scientists realized that this reasoning, however sensible it once seemed, was deeply flawed. Mass and energy are not distinct. They are the same basic stuff packaged in forms that make them appear different. Just as solid ice can melt into liquid water, Einstein showed, mass is a frozen form of energy that can be converted into the more familiar energy of motion. The amount of energy (E) produced by the conversion is given by his formula: multiply the amount of mass converted (m) by the speed of light squared (c²). Since the speed of light is a few hundred million meters per second (fast enough to travel around the earth seven times in a single second), c² , in these familiar units, is a huge number, about 100,000,000,000,000,000.


    There are two links here.One by Peter Woit with reference to article and one toSean Carroll who further illucidates the article by Brian Greene.

    So here I am at the other end of this referenced article, that other thoughts make their way into my mind. Previous discussison ongoing and halted. To todays references continued from all that we had encountered in what General Relativity surmizes.

    That this issue about gravity is very real. So that's our journey then, is to understand how we would percieve the strength and weakness through out the spacetime and unification of a 3 dimension space and one of time, to some tangible reality within this coordinated frame Euclidean defined.

    The Succession of Thinking

    Mark helps us see in a way we might not of considered before.

    Dark Matter and Extra-dimensional Modifications of Gravity

    But the issue is much more complicated then first realized if we take this succension of thinking beyond the carefuly plotted course Einstein gave us all to consider.

    Plato on Sep 27th, 2005 at 10:23 pm We were given some indications on this site about the state of affairs with Adelberger. Do you think this time span of proposed validation processes, were constructively and experimentally handled appropriately through it’s inception? As scientists would like to have seen all such processes handled in this respect?

    So indeed I began to see this space as very much alive with energy that had be extended from it's original design to events that pass through all of creation, then how indeed could two views be established in our thiniking, to have Greene explain to us, that the world holds a much more percpetable view about what is not so understood in reality.

    An Energy of Empty Space?

    Einstein was the first person to realize that empty space is not nothingness. Space has amazing properties, many of which are just beginning to be understood. The first property of space that Einstein discovered is that more space can actually come into existence. Einstein's gravity theory makes a second prediction: "empty space" can have its own energy. This energy would not be diluted as space expands, because it is a property of space itself; as more space came into existence, more of this energy-of-space would come into existence as well. As a result, this form of energy would cause the universe to expand faster and faster as time passes. Unfortunately, no one understands why space should contain the observed amount of energy and not, say, much more or much less.


    All the while the ideas that would leave gravity without explanation in a flat euclidean space, gravity would have been left to that solid response without further expalnatin in a weak field manifestation. But it was always much more then this I think.

    While being caution once on what the quantum harmonic oscillator is not, Smolin did not remove my thinking of what was all pervasive from what this "empty space" might have implied, that heretofor "it's strength" was a measure then of a bulk, and what better way in which to see this measure?

    Taken in context of this succession, this place where such conceptual framework had been taken too, it was very difficult not to encounter new ways in which to understand how gravity could changed our perceptions.

    Thalean views were much more then just issues about water and all her dynamical explanations. It presented a new world in which to percieve dynamical issues about which, straight line thinking could no longer endure. A new image of earth in all it's wander, no less then Greene's analysis to how this famous equation becomes evident in our everyday world. It presented a case for new geometries to emerge. Viable and strengthened resolve to work in abstract spaces that before were never the vsion of men and women who left earth. Yet it all had it's place to endure in this succession that we now have adbvanced our culture in ways that one would not have thought possible from just scientific leanings.

    So now I return myself to Einstein's allegorical talk on what concept had taken, when a scientist had wondered on the valuation of time.

    On mathematics, imagination & the beauty of numbers

    It's always nice to see this kind of infomration, because indeed if one were to start later on in life, then why not learn new things like mathematics. Especially, if it seems to be thta there is some consistancy in thought about geometry, that had been taken hold of, and leads the thinking mind capable.

    Dialogue between Barry Mazur & Peter Pesic
    Barry Mazur:
    I can’t answer that question, but I can offer some comments. A person’s ½rst steps in his or her mathematical development are exceedingly important. Early education deserves our efforts and ingenuity. But also here is a message to any older person who has never given a thought to mathematics or science during their school days or afterwards: You may be ready to start. Starting can be intellectually thrilling, and there are quite a few old classics written in just the right style to accompany you as you begin to take your ½rst steps in mathematics. I’m thinking, for example, of the old T. C.Mits series, or Tobias Dantizg’s wonderful Number: The Language of Science, or Lancelot Hogben’s Mathematics for the Millions. Moreover, one should not be dismayed that there are many steps– there is no need to take them all. Just enjoy each one you do take
    .


    Make it Fun

    Like Alice in Wonderland or views on the Looking Glast, it was not to hard to figure out that mathematicians like to tell stories too. Bring the latest together in a way that the layman can accept at the level societal minds do. It is interesting indeed in facing the strange and wonderful world of scientists and mathematicians in their abstract mood.

    The New World of Mr. Tompkins, by George Gamow and Russell Stannard, Cambridge, ISBN 0 521 63009 6
    After sending the piece to several large circulation magazines and receiving impersonal rejection slips, Gamow put it to one side until his physicist friend, Sir Charles Darwin (the grandson of the author of The Origin of Species), suggested sending it to C P Snow, then the editor of Discovery magazine, published by Cambridge University Press. The text was immediately accepted and the discerning Snow demanded more.
    Mr Tompkins tries valiantly to follow dry science lectures, but easily falls asleep. However, all becomes clear in his vivid dreams. Soon the articles were collected into Mr Tompkins in Wonderland, published in 1940, followed by Mr Tompkins Explores the Atom in 1944. Each was a major success and the two volumes were reissued with additional material as a single volume in 1965. This reissue alone was reprinted some 20 times.

    Tuesday, September 27, 2005

    Dirac's Hidden Geometries

    I find this interesting because I like to visualizze as much as possible, and I sometimes think the basis of the leading ideas in science would had to follow a progression. Klein's Ordering of Geometries was one such road that seem to make sense. The basis of relativity lead through in geometrical principals?

    Such an issue with string theory had to have such a basis with it as well, although how do you assign any views to the very begininngs of the universe below planck length? Well there are images to contend with what are these and how are they derived? Rotations held in context of te progression of this universe and all thoughts held to the very nature of particle creation and degrees fo freedom?

    [PAUL DIRAC]

    When one is doing mathematical work, there are essentially two different ways of
    thinking about the subject: the algebraic way, and the geometric way. With the algebraic way, one is all the time writing down equations and following rules of deduction, and interpreting these equations to get more equations. With the geometric way, one is thinking in terms of pictures; pictures which one imagines in space in some way, and one just tries to get a feeling for the relationships between the quantities occurring in those pictures. Now, a good mathematician has to be a master of both ways of those ways of thinking, but even so, he will have a preference for one or the other; I don't think he can avoid it. In my own case, my own preference is especially for the geometrical way.


    While I am very far from being the mathematician, I understand that this basis is very important. Such summations in mathmatical design, leave a flavour, for conceptiual ideas to form in images, so I understand this as well. It is a progression of sorts I think, as I read, and learn. Geometry lies at the very basis of all such progressions in science?

    So Feynmans toy models arose from the ideas of Dirac?

    Saturday, September 24, 2005

    Professor Shiing-Shen Chern


    HOUSTON JOURNAL OF MATHEMATICS
    Editorial, Electronic Edition Vol. 28, No. 2, 2002


    Shiing-Shen Chern -- famed mathematicianCarrie Sturrock, Chronicle Staff Writer
    Thursday, December 9, 2004


    He was a great mathematician partly because of the quality of his research as well as his ability to convey it to other people, UC Berkeley mathematics Professor Robin Hartshorne said. Professor Chern turned the once- dormant field of differential geometry, which deals with the mathematical description of geometric figures, into a lively field of study. He had the greatest impact on global differential geometry and complex algebraic geometry, which are fundamental to many areas of mathematics and theoretical physics.

    Big Ideas.....To String Theory

    Plato said:
    yes to Gauss and gaussian coordinates, not forgetting, Saccheri, Bolyai and Lobschevasky along this lineage of geometers


    On the Hypotheses which lie at the Bases of Geometry

    So A continuation from this, and reference to important papers for consideration.

    I was actually looking for papers on S.S.Chern and I have been having difficulty tracking down one of his papers entitled,"Relativity and Post Reimannian Differential Geometry," published in 1980. As I look, I usually come across interesting sites for consideration. They do indeed lead from one spot to another willy-nilly.

    So I thought I would show the transition to topics that I compiled for reference in relation to string theory.

    So having gone through a list here as follows, I came upon the article from a site called "Big Ideas". It was nice then, that I link to the site in question and the article for consideration. Talk about getting off the beaten path.:)

    My intentions was to see how Gauss's and S.S. Chern's work correlated together and developed in line with Reimann. Hence the paper in question I was looking for. If anything had change my perspective, Gauss and Reimann were instrumental here and the understading of the metric. Gaussian coordinates help united much for me into the picture General Relativity had taken me too in see the dynamcial nature of the graviational field.

    Big Ideas



    It is of course from 2003, but always interesting nonetheless.




    I understand Clifford's hesistancy on articles that have come out and some trepidation also seen by P.P. Cook on the issue Horizon of Hawkings in his article here. My focused is well set to this horizon as well, as th e question of blackhole types etc, and how such theoretical positions arise fromthis horizon. This was important to me that I move to the understanding of conformal ideas from tha horizon.

    But articles, as best they can, hopefully can bring the lay person up to speed on what these ladies and gentlemen are doing with string theory and such. They help me in the generalized direction, so I hope all things are not to lost for Clifford and Paul in their entrancement of observation. "Disgust" to something fine in the media of consideration.

    I noticed Paul's link to Jan Troost's site and have seen that site develope from inception, so it was interesting to continue to see the summation of string theory on his site as well. There are really good sites out there that I have kept track of, to help orientate my thinking in regards to to theoretical thinking at it's finest.

    The Total Field

    For me this title above strikes a cord somehow in the struggle and regard, leading in our comprehensions to the extension of the standard model. By bringing gravity into the picture and descibing the graviton teaming in the bulk of expression.



    The general theory of relativity is as yet incomplete insofar as it has been able to apply the general principle of relativity satisfactorily only to grvaitational fields, but not to the total field. We do not yet know with certainty by what mathematical mechanism the total field in space is to be described and what the general invariant laws are to which this total field is subject. One thing, however, seems certain: namely, that the general principal of relativity will prove a necessary and effective tool for the solution of the problem for the toal field.
    Out of My Later Years, Pg 48, Albert Einstein

    Well now the reason why this paragraph strikes such a chord with me, has everything to do with the information that I have progressed through, in order to reach this vision Lisa Randall does not think one asa layman is capable of? Now I should be fair here, and I am not judging personalities, but the essence of the statements about "observation" and "vision".

    Lisa Randall:
    Most people think of "seeing" and "observing" directly with their senses. But for physicists, these words refer to much more indirect measurements involving a train of theoretical logic by which we can interpret what is "seen."


    Now in my quest for comprehension, such building has gone on in my conceptual foundations, are ones that we are carefully lead through in theoretical developement. Ah so we see where such extensions have gone beyond th elayan's view then? To have such things of expression, in the computer world, as numerical relativity, is a nice way in which to round out the data and experience. But as she points out, we are talking about Physicists.

    Lisa Randall:
    Remarkably, we can potentially "see" or "observe" evidence of extra dimensions.


    Those Russion Dolls

    Well now. I have this strange picture in my head about "time variable images" we seen of the earth in measure, and such a statement above, by Einstein. It is information on the "total field" that struck immediately in my mind about all those things that lead one through to the comprehension of general relativity. It is indeed, about "gravity" and it indeed seen in the larger aspects of the cosmological scale. But then, how would such a thing take us down to scale in our look at quantum mechanical views. Other components of earth that efect time avraiableness and we are indeed driving this image of scale down to the component parts of our earth?



    So I have this picture of earth here. I know its not so pretty, but it describes in greater context the world as you have not seen it before. This advancement in observation, is much more inherent in our culture now, that the grade with which we assign physicists and the lay persons, are really never that far apart. What was accomplished, was that leading infomration and theorectical developement paved the way for an "illustrous view" as to those I impart now. They were already there but never seen in context of each other and as a total field.



    So now as I think about Lisa's words, I recognize more deeply the sigificance of how far our vision has been taken, not just in terms of the physicists view, but of how far we had been taken in layman terms as well. What then else retains this view about the total field that I had not show and in it writing, other images come to mind as follows.

    So developing this sense in terms of relativity and views of Einstein in regards to the total filed had consequences in my mind about how we view things in new ways.

    If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'.




    Now it has to be understood, that the total field is one which has inclusiveness such as these boxes indicate, that such views of our blue marble earth, do not consider as we lay "one" over the top of another. Such extensions to our views of earth, lead me to understand the complexity of these views in ways that we had not considered before, and with such a synoptical view, what indeed shall this total field say about earth? So that's where I am at. Much like, Glast, in it's own synoptical view about the range of our vision.

    So we have this frame of reference now to consider. Our apprehensions about earth(some who share the climatic valuation) that we can now say, that Inverse square law contains information in relation to "these boxes". That if taken to "new heights" our climatic valuations about this new view of earth, how shall we judge now, that such Kaluza Klein modes held in relation to the expanding nature of this point(circle) can have energy valuations assigned right from the supersymmetrical vision ofa beginning, to have phases (symmetry breaking)with which our views have been generated, in what we see of earth now?



    While indeed then, "light had been joined to gravity" how shall we wrap again the views of this earth, in what is now a teaming in this new place, where differences exist in our views. Strengths and weaknesses, are measures in this new abstracted view?

    So we have this total view in mind, about the "total field" and I have taken us to a a abstracted space within the idealization of what exists here now as earth arose from some beginning point. To what the earth encapsulates.

    How we view then such comsological events has a greater story as we look deep into space, and see the valution of those same cosmological events streaming past all things in existance, that such a gravitational view has arrows pointing in a certain direction. To ideas about comsological expansion and such. This has gone to far I think about our place in this new abstracted view of the universe:)