Thursday, December 02, 2004

=> A Symmetry Breaking Phase Transition


If we understand what that point suggests, we understand well what the planck length has told us to consider, that even for the briefest of moment, the gamma ray burst would have revealled the CMB in its glory, and slowly we see how such consolidations would have materialize in the current temperatures values of that CMB today?

Below is a quote from Green that help me to recognize the energy values assigned in the KK Tower, to have understood the Radius of this circle, has to reveal symmetrical phases in the developement of that same cosmo. I needed a way in which to see how it was possible geommetrically to absorb the variations in the symmetries of events, in that same cosmo such points could have existed at any time? We needed to look for these locations. These blackholes?


How can a speck of a universe be physically identical to the great expanse we view in the heavens above?

The Elegant Universe, Brian Greene, pages 248-249





G -> H -> ... -> SU(3) x SU(2) x U(1) -> SU(3) x U(1)

Here, each arrow represents a symmetry breaking phase transition where matter changes form and the groups - G, H, SU(3), etc. - represent the different types of matter, specifically the symmetries that the matter exhibits and they are associated with the different fundamental forces of nature





Figure 8 [replaced by our Figure 2] is to be conceived three-dimensionally, the circles being cross-sections of spherical shells in the plane of the drawing. A man is climbing about on the huge spherical surface 1; by measurements with rigid rods he recognizes it as a spherical shell, i.e. he finds the geometry of the surface of a sphere. Since the third dimension is at his disposal, he goes to spherical shell 2. Does the second shell lie inside the first one, or does it enclose the first shell? He can answer this question by measuring 2. Assume that he finds 2 to be the smaller surface; he will say that 2 is situated inside of 1. He goes now to 3 and finds that 3 is as large as 1.

How is this possible? Should 3 not be smaller than 2? ...

He goes on to the next shell and finds that 4 is larger than 3, and thus larger than 1. ... 5 he finds to be as large as 3 and 1.

But here he makes a strange observation. He finds that in 5 everything is familiar to him; he even recognizes his own room which was built into shell 1 at a certain point. This correspondence manifests itself in every detail; ... He is quite dumbfounded since he is certain that he is separated from surface 1 by the intervening shells. He must assume that two identical worlds exist, and that every event on surface 1 happens in an identical manner on surface 5. (Reichenbach 1958, 63-64)


As you can see Brain Greene's quote at the top of the page was taken from the context of the paragraph below. One of the difficulties in a commoner like me, was trying to piece together how the develpement of the mind of string theorists, could have geometrically defined the relationships on a more abstract level. As strange as it may seem, I found other correpsondances that would have probably shaken the very foundation of our human thinking, that I could not resist looking and following these developements.

The familiar extended dimensions, therefore, may very well also be in the shape of circles and hence subject to the R and 1/R physical identification of string theory. To put some rough numbers in, if the familiar dimensions are circular then their radii must be about as large as 15 billion light-years, which is about ten trillion trillion trillion trillion trillion (R= 1061) times the Planck length, and growing as the universe explands. If string theory is right, this is physically identical to the familiar dimensions being circular with incredibly tiny radii of about 1/R=1/1061=10-61 times the Planck length! There are our well-known familiar dimensions in an alternate description provided by string theory. [Greene's emphasis]. In fact, in the reciprocal language, these tiny circles are getting ever smaller as time goes by, since as R grows, 1/R shrinks. Now we seem to have really gone off the deep end. How can this possibly be true? How can a six-foot tall human being 'fit' inside such an unbelievably microscopic universe? How can a speck of a universe be physically identical to the great expanse we view in the heavens above?
The Elegant Universe, Brian Greene, pages 248-249



I was attracted very early to what I seen in the Klien bottle, that such modelling of these concepts was very striking to me. How could one not have seen some correspondance to the way in which the torus could have been revealled? That one might have considered, such modelling in the shape of our universe, as the point emerged from the brane? This inside/out feature was very troubling to me and still is, that I have endeveaor to follow this line of thinking, alongside of other avenues that were less then appreciated by the scientist/theorist that I have refrained from mentioning it here now.

Figure 15-18b Conformal Changes

Wednesday, December 01, 2004

Mapping Quark Confinement and The Energy

As I moved through the thinking of those extra dimensions it became apparent to me that the conceptualization of that distance scale was a strange world indeed. How, if we had accept the move to non-euclidean views could we not of accepted the consequences of this move?




Dazzled with the amazing properties of this new mathematical realm, everything seemed a bit magical, as if, experiencing for the first time a taste that is strange indeed? How would I recognize this strange dynamical world, if I had not understood this move to include the geometry that Kaluza and Klien adopted, to gather together another reality of photon engagement with that of gravity?



Fig. 1. In quantum chromodynamics, a confining flux tube forms between distant static charges. This leads to quark confinement - the potential energy between (in this case) a quark and an antiquark increases linearly with the distance between them.

So at the same time you had this distant measure, how could we resolve what was happening between those two points?

Without some supersymmetrical reality(supergravity) how could any point emerge from the brane if it did not recognize the evolution of those dimensions?



So how does this point expand? This is a simple enough question?

A theorem which is valid for a geometry in this sequence is automatically valid for the ones that follow. The theorems of projective geometry are automatically valid theorems of Euclidean geometry. We say that topological geometry is more abstract than projective geometry which is turn is more abstract than Euclidean geometry.

In the above picture Michael Duff draws our attention too, I was drawn to the same principals that Klein demonstrated in his ideas of projective geometry, as the dimensions are revealed?

IN this effort and recognition of appropriate geometry, I had wondered, that if the same consistancy with which these two had demonstrated the principals, euclidean
postulates fell in line, as a basis of this method of applicabilty? Does one now see this thread that runs through the geometry?

Having accepted the road travelled to GR we have come to recognize the royal road has lead us to a strange world indeed. First it was Reimann with Gauss looking over his shoulder, and Maxwell joining Faraday in this celebration, with Einstein bringing all the happy go lucky, into a fine example of what has been implied by the harmonious nature, structure of strings in concert?



But I am not happy yet. If one could not see what was happening between those two points, what's the use of talking any math, without the co-existance of the physics?


The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies. (This occurs because electromagnetism is a U(1) symmetry theory and U(1) is simply the group of rotations around a circle).



Gravity and Light in the Fifth Dimension


Theodor Franz Eduard Kaluza November 9, 1885 - January 19, 1954


In Kaku's preface of Hyperspace, page ix, we find a innocent enough statement that helps us orientate a view that previous to all understanding, is counched in the work of Kaluza.

In para 3, he writes,

Similarily, the laws of gravity and light seem totally dissimilar. They obey different physical assumptions and different mathematics. Attempts to splice these two forces have always failed. However, if we add one more dimension, a fifth dimension, to the previous four dimensions of space and time, then equations governing light and grvaity appear to merge together like two pieces of a jigsaw puzzle. Light, in fact, can be explained inthe fifth dimension. In this way, we see the laws of light and gravity become simpler in five dimensions.




Oskar Klein September 15, 1894 - February 5, 1977

Oskar Klein proposed that the fourth spatial dimension is curled up in a circle of very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies. (This occurs because electromagnetism is a U(1) symmetry theory and U(1) is simply the group of rotations around a circle).

Tuesday, November 30, 2004

A Classical Discription of the Quantum World?


D Orbital


Orbitals are probability diagrams. Specifically, an orbital describes a region in space where there is a 90% change of finding an electron. The electron is never restricted to an orbital as in travels around a nucleus, but it seems to keep returning to this particular region even though its behavior is random. The concept of the orbital differs from Bohr's concept of the orbit. Bohr considered an orbit to be a path that the electron always followed much like a train stays on a track. The concept of the orbital was developed in Schrodinger's work to avoid violating the Heisenberg Uncertainty Principle. In the Modern Theory of Atomic Structures a picture of an orbital is also called a Probability Diagram. By agreement among chemists, the orbital is a 90% Probability Diag ram. This idea allows the electron to be found anywhere and still indicates where the electron spends most of its time.




How would one remove the uncertainty principals from the small world but to have considered the probability density distributions? Below is a link that I saw early in my investigations that I had wondered, forced me to look at what could have been happening within the cosmo with events, that would release information into the bulk?



Electron’s probability density distribution for an atom in the state; n=4, l=4, m=0.



The star Eta Carina is ejecting a pair of huge lobes that form a "propeller" shape. Jet-like structures are emanating from the center (or "waist"), where the star (quite small on this scale) is located.

If string theory, in the Kaluza Klein tower energy determinations could have discriptively spoken to the particle natures, why was it not possible to map the nature of these particles, in gravitational information released from these cosmological events?

If information in the bulk has been released, then this information has been geometrically defined in the gravity waves that we would percieve here on earth? Ligo would have performed its ability to then map the configurations that we see happening in that same cosmos. What made this visualization interesting is if photon release was specific to electromagnetic events held to the brane, then our perception of this energy, would have been left for us to consider in those same gravitational waves?



Entanglement and the New Physics

I have to go back and look at this subject carefully to get a sense of what is going on in Lubos Blog(will supply proper link later).





It is possible to entangle two photons that have never interacted before by using two down-conversion sources and then subjecting one photon from each entangled pair to a Bell-state measurement. This causes the other two photons, which have never interacted, to become entangled.


Further Links for Consideration

The basics of two-party entanglement
---------------------------------------------


http://xxx.arxiv.org/abs/quant-ph/9511030
http://xxx.arxiv.org/abs/quant-ph/9511027
http://xxx.arxiv.org/abs/quant-ph/9604024
http://xxx.arxiv.org/abs/quant-ph/9707035
http://xxx.arxiv.org/abs/quant-ph/9709029
http://xxx.arxiv.org/abs/quant-ph/9801069
http://xxx.arxiv.org/abs/quant-ph/9811053
http://xxx.arxiv.org/abs/quant-ph/9905071


Basics of multiparty entanglement

------------------------
http://xxx.arxiv.org/abs/quant-ph/9907047
http://xxx.arxiv.org/abs/quant-ph/9908073
http://xxx.arxiv.org/abs/quant-ph/9912039
http://xxx.arxiv.org/abs/quant-ph/0005115


Basics of secret sharing

-----------------------
http://xxx.arxiv.org/abs/quant-ph/9806063







We have engineered an entangled state made of two atoms and the cavity mode. The entanglement is produced in a succession of controlled steps addresssing the particles individually. The sequence is fully programmable and could be configured to produce any quantum state. We have chosen here to prepare a triplet of entangled particles of the GHZ type. The entanglement has been demonstrated by experiments performed in two orthogonal basis. The procedure can, in principle, operate on larger numbers of particles, opening the way to new fundamental tests of quantum theory.

Test of the Quantenteleportation
over long distances in the duct system of Vienna


Working group
Quantity of experiment and the Foundations OF Physics
Professor Anton Zeilinger


Quantum physics questions the classical physical conception of the world and also the everyday life understanding, which is based on our experiences, in principle. In addition, the experimental results lead to new future technologies, which a revolutionizing of communication and computer technologies, how we know them, promise.

In order to exhaust this technical innovation potential, the project "Quantenteleportation was brought over long distances" in a co-operation between WKA and the working group by Professor Anton Zeilinger into being. In this experiment photons in the duct system "are teleportiert" of Vienna, i.e. transferred, the characteristics of a photon to another, removed far. First results are to be expected in the late summer 2002
.






Monday, November 29, 2004

Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

Was the big bang really the beginning of time? Or did the universe exist before then? Such a question seemed almost blasphemous only a decade ago. Most cosmologists insisted that it simply made no sense - that to contemplate a time before the big bang was like asking for directions to a place north of the North Pole. But developments in theoretical physics, especially the rise of string theory, have changed their perspective. The pre-bang universe has become the latest frontier of cosmology.

The new willingness to consider what might have happened before the bang is the latest swing of an intellectual pendulum that has rocked back and forth for millennia. In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined with a grand set of concerns, one famously encapsulated in an 1897 painting by Paul Gauguin: D'ou venons-nous? Que sommes-nous? Ou allons-nous? "Where do we come from? What are we? Where are we going?" The piece depicts the cycle of birth, life and death - origin, identity and destiny for each individual - and these personal concerns connect directly to cosmic ones. We can trace our lineage back through the generations, back through our animal ancestors, to early forms of life and protolife, to the elements synthesized in the primordial universe, to the amorphous energy deposited in space before that. Does our family tree extend forever backward? Or do its roots terminate? Is the cosmos as impermanent as we are
?






One had to know at a deeper level how we might have engaged the cyclical universe? Could bubble nucleation fall in line with the ideas about the origins of this universe and find itself too part of this creative scenario?


Colliding branes had to have some recognition in the world that we would have considered, bubble nucleation, as manifesting itself over and over again within the confines of our own universe now? Would this have made it likely that such manifestions really go to the source of what could have begun, has always been and wil continue to evolve, in this cycle of birth death and being reborn?


Neil Turok

The Myth of the Beginning of Time

The new willingness to consider what might have happened before the big bang is the latest swing of an intellectual pendulum that has rocked back and forth for millenia. In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined witha grand set of concerns, one famosly encapsulated in a 1897 painting by Paul Gauguin: D'ou venons? Que sommes-nous? Ou allons-nous? Scientific America, The Time before Time, May 2004



Sister Wendy's American Masterpieces":

"This is Gauguin's ultimate masterpiece - if all the Gauguins in the world, except one, were to be evaporated (perish the thought!), this would be the one to preserve. He claimed that he did not think of the long title until the work was finished, but he is known to have been creative with the truth. The picture is so superbly organized into three "scoops" - a circle to right and to left, and a great oval in the center - that I cannot but believe he had his questions in mind from the start. I am often tempted to forget that these are questions, and to think that he is suggesting answers, but there are no answers here; there are three fundamental questions, posed visually.

"On the right (Where do we come from?), we see the baby, and three young women - those who are closest to that eternal mystery. In the center, Gauguin meditates on what we are. Here are two women, talking about destiny (or so he described them), a man looking puzzled and half-aggressive, and in the middle, a youth plucking the fruit of experience. This has nothing to do, I feel sure, with the Garden of Eden; it is humanity's innocent and natural desire to live and to search for more life. A child eats the fruit, overlooked by the remote presence of an idol - emblem of our need for the spiritual. There are women (one mysteriously curled up into a shell), and there are animals with whom we share the world: a goat, a cat, and kittens. In the final section (Where are we going?), a beautiful young woman broods, and an old woman prepares to die. Her pallor and gray hair tell us so, but the message is underscored by the presence of a strange white bird. I once described it as "a mutated puffin," and I do not think I can do better. It is Gauguin's symbol of the afterlife, of the unknown (just as the dog, on the far right, is his symbol of himself).

"All this is set in a paradise of tropical beauty: the Tahiti of sunlight, freedom, and color that Gauguin left everything to find. A little river runs through the woods, and behind it is a great slash of brilliant blue sea, with the misty mountains of another island rising beyond Gauguin wanted to make it absolutely clear that this picture was his testament. He seems to have concocted a story that, being ill and unappreciated (that part was true enough), he determined on suicide - the great refusal. He wrote to a friend, describing his journey into the mountains with arsenic. Then he found himself still alive, and returned to paint more masterworks. It is sad that so great an artist felt he needed to manufacture a ploy to get people to appreciate his work. I wish he could see us now, looking with awe at this supreme painting.
"


Quantum Geometricization: The Struggle



If Lorentz symmetry is broken by some mechanism originating at the Planck scale, is there any hope of detecting such an effect? Surprisingly, the answer is yes. Over the past decade Kostelecky and co-workers have been exploring how a violation of Lorentz symmetry might provide evidence for new physics arising at the Planck scale. However, rather than smash particles together at high energies to explore this, researchers are turning to ultrahigh-precision experiments at low energies to search for signs that Lorentz symmetry has been broken. The idea is that such low-energy effects are caused by corrections involving inverse powers of the Planck scale.

Possible violations of Lorentz invariance are an ideal signal of new physics because nothing in the Standard Model of particle physics permits the violation of special relativity. Therefore, no conventional process could ever mimic or cover up a genuine signal of Lorentz violation.

Since a viable theory of physics at the Planck scale remains elusive, it is difficult to make precise predictions for the small corrections that could occur due to Lorentz violation. However, we can obtain a rough estimate. The rest-mass energy of the proton, for example, is about 1 GeV, and the ratio of this energy to the Planck scale is about 1 part in 1019. If an experiment with protons is sensitive to effects at or below this level, then it is effectively probing the Planck scale.


I tend to think if one can orientate the thinking that is developing, it is not to hard to see where we might develope further perspectives, as they have been outlined in article and in articles that I have presented for consideration.

This idea of Quantum geometry being revealled in quantum geometricization is a valuable insight that Greene offers to us. Continues, to speak to Einstein revelations, much as Smolin does in his own theoretics.

"But now, almost a century after Einstein's tour-de-force, string theory gives us a quantum-mechanical discription of gravity that, by necessity, modifies general relativity when distances involved become as short as the Planck length. Since Reinmannian geometry is the mathetical core of general relativity, this means that it too must be modified in order to reflect faithfully the new short distance physics of string theory. Whereas general relativity asserts that the curved properties of the universe are described by Reinmannian geometry, string theory asserts this is true only if we examine the fabric of the universe on large enough scales. On scales as small as planck length a new kind of geometry must emerge, one that aligns with the new physics of string theory. This new geometry is called, quantum geometry."


The Elegant Universe, by Brian Greene, pg 231 and Pg 232

Many claim a commercialization of the work current technologies are spoken to here(?) of researchers respective corners. That piece meal information is feed to the public, does not do its justice? If such, "cut and paste" values would institute a perspective view of what has been reveallled with some consistancy, then one has done their job in getting to the source valuation and recognitions of the limitations now affecting theoretics and physic alike?

Sunday, November 28, 2004

Non Euclidean Geometry and the Universe



With Critical density ( Omega ), matter distinctions become apparent, when looking at the computerized model of Andrey Kravtsov.



Georg Friedrich Bernhard Riemann 1826 – 1866

Riemannian Geometry, also known as elliptical geometry, is the geometry of the surface of a sphere. It replaces Euclid's Parallel Postulate with, "Through any point in the plane, there exists no line parallel to a given line." A line in this geometry is a great circle. The sum of the angles of a triangle in Riemannian Geometry is > 180°.

To me this is one of the greatest achievements of mathematical structures that one could encounter, It revolutionize many a view, that been held to classical discriptions of reality.

In the quiet achievement of Riemann’s tutorial teacher Gauss, recognized the great potential in his student. On the curvature parameters, we recognize in Gauss’s work, what would soon became apparent? That we were being lead into another world for consideration?



So here we are, that we might in our considerations go beyond the global perspectives, to another world that Einstein would so methodically reveal in the geometry and physics, that it would include the electromagnetic considerations of Maxwell into a cohesive whole and beyond.

The intuitive development that we are lead through geometrically asks us to consider again, how Riemann moved to a positive aspect of the universe?



The activity in string theory and quantum gravity is aimed at developing a quantum theory that incorporates the physics of gravity and is valid down to the smallest length scales, where conventional quantum field theory can no longer be applied. There has been rapid progress in this area in recent years, in part due to work of Princeton faculty and students, and it continues to be a fertile source of research problems.


Friedman Equation What is pdensity.

What are the three models of geometry? k=-1, K=0, k+1

Negative curvature

Omega=the actual density to the critical density

If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?

If such a progression is understood in the evolution of the geometry raised in non euclidean perspectives, this has in my view raised the stakes on how we percieve the dynamical valuation of a world that we were lead into from GR?

Facing the frontier of cosmological proportions, we soon meet views as demonstrated in the Solvay meetings where the thought experiments plague the relation of Quantum Mechanics. Even though Einstein held his position about the beauty of GR( it's stand alone feature) in it's own right, did not mean that the efforts to quantization had not been considered by him?

Moving to the non-euclidean realm, set up my thinking in terms of gravitational considerations. Dali's example of the tesserack reveals a deeper understanding of this progression to an non-euclidean view that Dali heightened in this aspect of religiousness and God implication, by demonstrating the Crucifixation paintng that he did. Even Escher in his realization, understood that the royal road to geometry has some road(physics) to travel before it could meet his perspective eye.

Saturday, November 27, 2004

Searching for Changes in the Fine-Structure Constant Using Atomic Clocks





Another laser beam is used to make the atoms fluoresce, and the amount of fluorescence is measured as a function of the microwave frequency to plot a "resonance curve". An ultra-precise measurement of time can be made by measuring the frequency of the peak in this resonance curve (see "Atomic clocks" by Pierre Lemonde in Physics World January 2001 pp39-44).



The reason for this post was triggered by what can be found at Lubos Motl's site One will have to watch the interaction and information that is presenting itself in the comments that come, and maybe we can build from this?

When I looked at Glast, it seemed a fine way in which to incorporate one more end of the "spectrum" to how we see the cosmo? That we had defined it over this range of possibilties? How could we move further from consideration then, and I fall short in how the probabilties of how we might percieve graviton exchange of information in the bulk could reveal more of that spectrum? A resonance curve?

If one alters their perspective in terms of resonantial features(using string theory concepts as a quantum mechanical discription of the spacetime), how would we measure these changes in planck epoch ( deeper then gamma ray detection)? Can this be done?


Variation of the Standard Two-Pin-hole "welcher-Weg" Optics Experiment






Results of different measurements of the Ft value in beta decay
George R. Welch setting up an optics experiment with graduate student Sophia Ilina
Dr. Scully and Dr. Townes, the inventor of the maser and laser (University of California, Berkeley), during the dedication of the Charles H. Townes Reading room
Assistant research scientist Daya Rathnayaka with a UHV deposition chamber


Tomorrow at 4 PM, physicist Shahriar S. Afshar, a Visiting Scientist at Harvard University's Physics Department will give a talk entitled Violation of Bohr's principle of complementarity in an optical "which-way" experiment at Texas A&M University.

Afshar has done a variation of the standard two-pin-hole "welcher-Weg" optics experiment, in which he demonstrates that wave interference is present even when one is determining through which pinhole a photon passes. This result is in direct contradiction to Neils Bohr's Principle of Complementarity, which would require in the quantum world that when one is measuring particle properties [formerly read "measuring quantum properties" -KC], all wave interference phenomena must vanish. Afshar's trick is to find the location of the minimum points of wave interference, place one or more wires at these minimum points, and observe how much light is intercepted when one is determining the pinhole through which the photons passed.

It has been widely accepted that the rival interpretations of quantum mechanics, e.g., the Copenhagen Interpretation, the Many-Worlds Interpretation, and my father John Cramer's Transactional Interpretation, cannot be distinguished or falsified by experiment, because the experimental predictions come from the formalism that all such interpretations describe. However, the Afshar Experiment demonstrates in an interaction-free way that there is a loophole in this logic: if the interpretation is inconsistent with the formalism, then it can be falsified. In particular, the Afshar Experiment falsifies the Copenhagen Interpretation, which requires the absence of interference in a particle-type measurement. It also falsifies the Many-Worlds Interpretation which tells us to expect no interference between "worlds" that are physically distinguishable, e.g., that correspond to the photon's measured passage through one pinhole or the other [the word "measured" added 4/28. -KC].

The Transactional Interpretation, on the other hand, has no problem in explaining that Afshar results. "Offer waves" from the source pass through both pinholes and interfere, creating a condition in which no transactions to the wires can form. Therefore, no photons are intercepted by wires, as Afshar observes. The quantum formalism makes the same predictions.

On this basis, it appears that two of the major interpretations of quantum mechanics have been falsified and should be relegated to the waste basket of physics history. The Transactional Interpretation, which involves a forward/back in time handshake, is one of the few (perhaps the only) interpretation(s) left standing after the Afshar test.

Yay for the home team!

(See also the Power Point presentation for my dad's Hal Clement memorial lecture at Boskone; Google also has an html cache of the Powerpoint presentation.)

LET ME KNOW if anyone reading this attends Afshar's talk or attended a similar one he gave at Harvard recently.

TRACKBACKS: My MT trackbacks don't work. One of these days I'll figure out why. But this entry has received really a lot, so here is a link to Technorati's listing of links to this post. Boingboing also blogged it, but the post has already slid off their main page.

SEE UPDATE, 5/10/04.