Showing posts sorted by date for query isostatic. Sort by relevance Show all posts
Showing posts sorted by date for query isostatic. Sort by relevance Show all posts

Wednesday, August 08, 2012

Sphere and Sound Waves


Don demonstrates water oscillations on a speaker in microgravity, and ZZ Top rocks the boat 250 miles above Earth.Science off the Sphere: Space Soundwaves
So of course I might wonder about cymatics in space. It 's more the idea that you could further experiment with the environment with which life on the space station may provide in opportunity. That's all.:)



There is a reason why I am presenting this blog entry.




It has to do with a comparison that came to mind about our earth and the relationship we might see to a sphere of water. Most will know from my blog the relevant topic used in terms of Isostatic adjustment in terms of planet design and formation. It is also about gravity and elemental consideration in terms of the shape of the planet.

Now sure we can expect certain things from the space environment in terms of molecular arrangement but of course my views are going much deeper in terms of the makeup of that space given the constituents of early universe formations.  So here given to states for examination I had an insight in terms of how one may arrange modularization in terms of using the space environment to capitalize.

So there is something forming in mind here about the inherent nature of the matter constituents that I may say deeper then the design itself such arrangements are predestined to become perfectly arranged according to the type of element associated with it?

 I want to be in control of that given a cloud of all constituents so that I may choose how to arrange the mattered state of existence. A planet maker perhaps?:) Design the gravity field. There are reasons for this.




Image: NASA/JPL-
Planets are round because their gravitational field acts as though it originates from the center of the body and pulls everything toward it. With its large body and internal heating from radioactive elements, a planet behaves like a fluid, and over long periods of time succumbs to the gravitational pull from its center of gravity. The only way to get all the mass as close to planet's center of gravity as possible is to form a sphere. The technical name for this process is "isostatic adjustment."

With much smaller bodies, such as the 20-kilometer asteroids we have seen in recent spacecraft images, the gravitational pull is too weak to overcome the asteroid's mechanical strength. As a result, these bodies do not form spheres. Rather they maintain irregular, fragmentary shapes.




See Also:

Sunday, November 14, 2010

The Lunar Far Side: The Side Never Seen from Earth

                                                            Mass concentration (astronomy)

This figure shows the topography (top) and corresponding gravity (bottom) signal of Mare Smythii at the Moon. It nicely illustrates the term "mascon". Author Martin Pauer

While article is from Tuesday, June 22, 2010 9:00 PM it still amazes me how we see the moon in context of it's coloring.
Topography when seen in context of landscape, how we measure aspects of the gravitational field supply us with a more realistic interpretation of the globe as a accurate picture of how that sphere(isostatic equilibrium)  looks.


Image Credit: NASA/Goddard
Ten Cool Things Seen in the First Year of LRO

Tidal forces between the moon and the Earth have slowed the moon' rotation so that one side of the moon always faces toward our planet. Though sometimes improperly referred to as the "dark side of the moon," it should correctly be referred to as the "far side of the moon" since it receives just as much sunlight as the side that faces us. The dark side of the moon should refer to whatever hemisphere isn't lit at a given time. Though several spacecraft have imaged the far side of the moon since then, LRO is providing new details about the entire half of the moon that is obscured from Earth. The lunar far side is rougher and has many more craters than the near side, so quite a few of the most fascinating lunar features are located there, including one of the largest known impact craters in the solar system, the South Pole-Aitken Basin. The image highlighted here shows the moon's topography from LRO's LOLA instruments with the highest elevations up above 20,000 feet in red and the lowest areas down below -20,000 feet in blue.

Learn More About Far side of the Moon

***
 Credit: NASA/Goddard/MIT/Brown

Figure 4: A lunar topographic map showing the Moon from the vantage point of the eastern limb. On the left side of the Moon seen in this view is part of the familiar part of the Moon observed from Earth (the eastern part of the nearside). In the middle left-most part of the globe is Mare Tranquillitatis (light blue) the site of the Apollo 11 landing, and above this an oval-appearing region (Mare Serenitatis; dark blue) the site of the Apollo 17 landing. Most of the dark blue areas are lunar maria, low lying regions composed of volcanic lava flows that formed after the heavily cratered lunar highlands (and are thus much less cratered). The topography is derived from over 2.4 billion shots made by the Lunar Orbiter Laser Altimeter (LOLA) instrument on board the NASA Lunar Reconnaissance Orbiter. The large near-circular basins show the effects of the early impacts on early planetary crusts in the inner solar system, including the Earth. 

***
 Author and Image Credit: Mark A. Wieczorek
Radial gravitational anomaly at the surface of the Moon as determined from the gravity model LP150Q. The contribution due to the rotational flattening has been removed for clarity, and positive anomalies correspond to an increase in magnitude of the gravitational acceleration. Data are presented in two Lambert azimuthal equal area projections.
The major characteristic of the Moon's gravitational field is the presence of mascons, which are large positive gravity anomalies associated with some of the giant impact basins. These anomalies greatly influence the orbit of spacecraft about the Moon, and an accurate gravitational model is necessary in the planning of both manned and unmanned missions. They were initially discovered by the analysis of Lunar Orbiter tracking data,[2] since navigation tests prior to the Apollo program experienced positioning errors much larger than mission specifications.

Monday, October 12, 2009

Universality Can Lead too, Isostatic Adjustment


Pressure and heat melts protons and neutrons into a new state of matter - the quark gluon plasma.


Now you must know that this entry holds philosophical perspective and is the mandate of Night Light Mining Company to explore the potentials of planetary and geological data gained from scientific analysis to help the society of earth to move farther out into space, and to colonize.

Why are Planets Round?

It is always interesting to see water in space.

Image: NASA/JPL-
Planets are round because their gravitational field acts as though it originates from the center of the body and pulls everything toward it. With its large body and internal heating from radioactive elements, a planet behaves like a fluid, and over long periods of time succumbs to the gravitational pull from its center of gravity. The only way to get all the mass as close to planet's center of gravity as possible is to form a sphere. The technical name for this process is "isostatic adjustment."

With much smaller bodies, such as the 20-kilometer asteroids we have seen in recent spacecraft images, the gravitational pull is too weak to overcome the asteroid's mechanical strength. As a result, these bodies do not form spheres. Rather they maintain irregular, fragmentary shapes.



I wanted to explore the philosophical bend first, as it sets the tone for analysis not only of the potentials of planets but of what we can gained from understanding the place of values we can set around ourselves.


Two-dimensional analogy of space–time distortion. Matter changes the geometry of spacetime, this (curved) geometry being interpreted as gravity. White lines do not represent the curvature of space but instead represent the coordinate system imposed on the curved spacetime, which would be rectilinear in a flat spacetime. See: Spacetime


Be it known then, that such universality can exist in principle around this "central core" that such equatorial measures are distinctive and related to the equatorial possibility of Inverse Square Law, that as a mathematical principle, this is brought to bear on how we solidify the substance of the elemental table, that we can say, indeed, that such values can be assigned in "refractive light" to values which are built to become "round in planetary constitution."



The life cycle of a lunar impact and associated time and special scales. The LCROSS measurement methods are “layered” in response to the rapidly evolving impact environment. See: Impact:Lunar CRater Observation Satellite (LCROSS)



It becomes an evolutionary discourse then about what began from universality "in principle" can become such a state as evident in the framework of elemental consideration, that one might say indeed that it is "this constitution" that will signify the relevance to the spacetime fabric and it's settled orbit.

***


See Also:

Isostatic Adjustment is Why Planets are Round?

Centroids

Friday, October 09, 2009

Plato's Nightlight Mining Company is claiming Aristarchus Crater and Surrounding Region

So what is the legality of claiming land on the moon?


What regions would you like to claim if you had the opportunity to make such a claim? Imagine  Covered Wagons racing now as spaceships. Racing, to plant their posts too include, so many acres of land.

Stampede for Oklahoma's Unassigned Lands

***

Hubble Reveals Potential Titanium Oxide Deposits at Aristarchus and Schroter's Valley Rille


As a photocatalyst

Titanium dioxide, particularly in the anatase form, is a photocatalyst under ultraviolet light. Recently it has been found that titanium dioxide, when spiked with nitrogen ions, or doped with metal oxide like tungsten trioxide, is also a photocatalyst under visible and UV light. The strong oxidative potential of the positive holes oxidizes water to create hydroxyl radicals. It can also oxidize oxygen or organic materials directly. Titanium dioxide is thus added to paints, cements, windows, tiles, or other products for sterilizing, deodorizing and anti-fouling properties and is also used as a hydrolysis catalyst. It is also used in the Graetzel cell, a type of chemical solar cell.
The photocatalytic properties of titanium dioxide were discovered by Akira Fujishima in 1967[15] and published in 1972.[16] The process on the surface of the titanium dioxide was called the Honda-Fujishima effect.[15] Titanium dioxide has potential for use in energy production: as a photocatalyst, it can
  • carry out hydrolysis; i.e., break water into hydrogen and oxygen. Were the hydrogen collected, it could be used as a fuel. The efficiency of this process can be greatly improved by doping the oxide with carbon.[17].
  • Titanium dioxide can also produce electricity when in nanoparticle form. Research suggests that by using these nanoparticles to form the pixels of a screen, they generate electricity when transparent and under the influence of light. If subjected to electricity on the other hand, the nanoparticles blacken, forming the basic characteristics of a LCD screen. According to creator Zoran Radivojevic, Nokia has already built a functional 200-by-200-pixel monochromatic screen which is energetically self-sufficient.
In 1995 Fujishima and his group discovered the superhydrophilicity phenomenon for titanium dioxide coated glass exposed to sun light.[15] This resulted in the development of self-cleaning glass and anti-fogging coatings.
TiO2 incorporated into outdoor building materials, such as paving stones in noxer blocks or paints, can substantially reduce concentrations of airborne pollutants such as volatile organic compounds and nitrogen oxides.[18]
A photocatalytic cement that uses titanium dioxide as a primary component, produced by Italcementi Group, was included in Time's Top 50 Inventions of 2008.[19]

[edit] For wastewater remediation

TiO2 offers great potential as an industrial technology for detoxification or remediation of wastewater due to several factors.




  1. The process occurs under ambient conditions very slowly, direct UV light exposure increases the rate of reaction.






  2. The formation of photocyclized intermediate products, unlike direct photolysis
    techniques, is avoided.





  3. Oxidation of the substrates to CO2 is complete.






  4. The photocatalyst is inexpensive and has a high turnover.






  5. TiO2 can be supported on suitable reactor substrates.


***



The lunar south pole as it will appear on the night of impact. Photo Credit - NMSU / MSFC Tortugas Observatory

The impact site is crater Cabeus near the Moon's south pole. NASA is guiding the Lunar Crater Observation and Sensing Satellite ("LCROSS" for short) and its Centaur booster rocket into the crater's floor for a spectacular double-impact designed to "unearth" signs of lunar water. See:LCROSS Viewer's Guide


Image Above: The dark blue and purple areas at the moons poles indicate neutron emissions that are consistent with hydrogen-rich deposits covered by desiccated regolith. These hydrogen signatures are possible indications of water in the form of ice or hydrated minerals. Feldman et al., Science, 281, 1496, 1998. Click image to enlarge Credit: NASA

Just like on Earth, water will be a crucial resource on the moon. Transporting water and other goods from Earth to the moon’s surface is expensive. Finding natural resources, such as water ice, on the moon could help expedite lunar exploration. The LCROSS mission will search for water, using information learned from the Clementine and Lunar Prospector missions.

By going to the moon for extended periods of time, a new generation of explorers will learn how to work safely in a harsh environment. A lunar outpost is a stepping stone to future exploration of other bodies in our solar system. The moon also offers many clues about when the planets were formed.

See:Backreaction: Free Falling

See Also:
Jun 06, 2009
 
Oct 12, 2009
 
Jan 18, 2008

 
Mar 12, 2007



 

Thursday, January 29, 2009

Formation of Gravity

Wegener proposed that the continents floated somewhat like icebergs in water. Wegener also noted that the continents move up and down to maintain equilibrium in a process called isostasy.Alfred Wegener


Just thought I would add this for consideration. Grace satellite does a wonderful job of discerning this feature? Amalgamating differing perspectives allows one to encapsulate a larger view on the reality of Earth. More then the sphere. More then, what Joseph Campbell describes:

The Power of Myth With Bill Moyers, by Joseph Campbell , Introduction that Bill Moyers writes,

"Campbell was no pessimist. He believed there is a "point of wisdom beyond the conflicts of illusion and truth by which lives can be put back together again." Finding it is the "prime question of the time." In his final years he was striving for a new synthesis of science and spirit. "The shift from a geocentric to a heliocentric world view," he wrote after the astronauts touched the moon, "seemed to have removed man from the center-and the center seemed so important...


While one can indeed approximate according to the spherical cow, in terms of events in the cosmos, I was being more specific when it comes to demonstrating a geometrical feature of the sphere in terms of the geometry of the Centroid. This feature is embedded in the validation of the sphere in regard to gravity?

Image: NASA/JPL-
Planets are round because their gravitational field acts as though it originates from the center of the body and pulls everything toward it. With its large body and internal heating from radioactive elements, a planet behaves like a fluid, and over long periods of time succumbs to the gravitational pull from its center of gravity. The only way to get all the mass as close to planet's center of gravity as possible is to form a sphere. The technical name for this process is "isostatic adjustment."

With much smaller bodies, such as the 20-kilometer asteroids we have seen in recent spacecraft images, the gravitational pull is too weak to overcome the asteroid's mechanical strength. As a result, these bodies do not form spheres. Rather they maintain irregular, fragmentary shapes.


***


It was important to see how such planets form and given their "Mass and densities" which I thought to show how such a valuation could be seen in relation to the variance of gravity so it is understood.

Isostasy (Greek isos = "equal", stásis = "standstill") is a term used in geology to refer to the state of gravitational equilibrium between the earth's lithosphere and asthenosphere such that the tectonic plates "float" at an elevation which depends on their thickness and density. This concept is invoked to explain how different topographic heights can exist at the Earth's surface. When a certain area of lithosphere reaches the state of isostasy, it is said to be in isostatic equilibrium. Isostasy is not a process that upsets equilibrium, but rather one which restores it (a negative feedback). It is generally accepted that the earth is a dynamic system that responds to loads in many different ways, however isostasy provides an important 'view' of the processes that are actually happening. Nevertheless, certain areas (such as the Himalayas) are not in isostatic equilibrium, which has forced researchers to identify other reasons to explain their topographic heights (in the case of the Himalayas, by proposing that their elevation is being "propped-up" by the force of the impacting Indian plate).

In the simplest example, isostasy is the principle of buoyancy observed by Archimedes in his bath, where he saw that when an object was immersed, an amount of water equal in volume to that of the object was displaced. On a geological scale, isostasy can be observed where the Earth's strong lithosphere exerts stress on the weaker asthenosphere which, over geological time flows laterally such that the load of the lithosphere is accommodated by height adjustments.


***


Such strength variances can be attributed to the height with which this measure is taken(time clocks and such) and such a validation in terms of Inverse Square Law goes to help to identify this strength and weakness, according to the nature of the mass and density of the planet.



As one of the fields which obey the general inverse square law, the gravity field can be put in the form shown below, showing that the acceleration of gravity, g, is an expression of the intensity of the gravity field.
See: Hyperphysics-Inverse Square Law-Gravity

***


It is important then such a measure of the energy needed in which to overcome the pull of the earth, then was assigned it's energy value so such calculations are then validated in the escape velocity. There are other ways in which to measure spots in space when holding a bulk view of the reality in regards to gravity concentrations and it locations.

See: Hyperphysics-Gravity-Escape Velocity

***


See Also:
  • Isostatic Adjustment is Why Planets are Round?
  • Concepts of the Fifth Dimension
  • Dealing With a 5D World
  • Friday, October 03, 2008

    Centroids

    Conclusion:The state of mind of the observer plays a crucial role in the perception of time.Einstein


    It is often I consider the Center of Gravity(Mass) as an illustration of the perspective that exists "around and within us" as a product of the natural world. We are limited by our own knowledge, yet when given, and lead to observation of what is natural in our world, we see where we had not seen before.

    \bar z = \frac{\int z dm}{m}The center of gravity (or mass), abbreviated as COM, of any object is that point within the object upon which gravity (or any body force) acts, regardless of the orientation of the object. The COM of an object may be calculated by using the principle of equilibrium.


    First off you must know that I work according to a set of principles that were discovered after a time through "subjective reflection" on the nature of mind and how it works. Of course I am no expert here, but the principles themself are realizable as an active function in the recognition of how one might interpret the world.

    \bar y = \frac{\int y \rho dV}{\int \rho dV}In the event that the density ρ of an object is not uniform throughout, the calculation of COM may be done by a similar set of equations involving the addition of density to the analysis.


    It is by taking one to recognisance of the title of this blog entry that I wanted to discuss the "subjective part" and the understanding of the "mathematical construct" that one, in my opinion exists. Just as we progress to understand the natural world around us, I believe these are synonymous with each other.

    \bar Y = \frac{\sum m \bar y}{\sum m}If a body is made up of multiple sections, each of which has a unique mass, the method for evaluating the centroid of that body is to evaluate the composite body by finite element analysis of each of the sections through the use of moment balancing, as above.



    Liminocentric structures




    You can find much on this site in regards to this issue, and I now relate centroid for consideration in the case of this topic. I presented it at the Backreaction site today to show an advancement in the thinking as we move to incorporate the knowledge. As we come to understand the natural world around us.

    Giving earth a new understanding in terms of its densities and it's relation to the gravitational contribution, it has in our new views of the globe, helped me learn and understand the feature of gravity as it extends to the cosmos.

    I have taken it a step further as many of you know to include the emotive states as valued physiological relations to what manifests in the immediate environs of the body home. While this is a far cry from the understanding of gravitational research it was inevitable for me to see an extension of how one can topological relate to the world, in this inductive/deductive mode to reason.

    While living on this earth, we always come home for reflection, and if any have not taken stock of what has accumulated during the day, then it is inevitable that is will come to reside very close to home as one sleeps through the nocturnality night. This research of subjectivity and mind had to entail "all of our activities." It had to include an understanding of the "mathematical constructs" that we observe, in order to relate to nature.

    List of Centroids




































































































    ShapeFigure\bar x\bar yArea
    Triangular areaImage:Triangle_centroid_2.svg\frac{b}{3}\frac{h}{3}\frac{bh}{2}
    Quarter-circular areaImage:Quarter_circle_centroid.svg\frac{4r}{3\pi}\frac{4r}{3\pi}\frac{\pi r^2}{4}
    Semicircular areaImage:Semicircle_centroid.svg\,\!0\frac{4r}{3\pi}\frac{\pi r^2}{2}
    Quarter-elliptical areaImage:Elliptical_quarter.svg\frac{4a}{3\pi}\frac{4b}{3\pi}\frac{\pi a b}{4}
    Semielliptical areaThe area inside the ellipse \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 and above the \,\!x axis\,\!0\frac{4b}{3\pi}\frac{\pi a b}{2}
    Semiparabolic areaThe area between the curve y = \frac{h}{b^2} x^2 and the \,\!y axis, from \,\!x = 0 to \,\!x = b\frac{3b}{8}\frac{3h}{5}\frac{2bh}{3}
    Parabolic areaThe area between the curve \,\!y = \frac{h}{b^2} x^2 and the line \,\!y = h\,\!0\frac{3h}{5}\frac{4bh}{3}
    Parabolic spandrelThe area between the curve \,\!y = \frac{h}{b^2} x^2 and the \,\!x axis, from \,\!x = 0 to \,\!x = b\frac{3b}{4}\frac{3h}{10}\frac{bh}{3}
    General spandrelThe area between the curve y = \frac{h}{b^n} x^n and the \,\!x axis, from \,\!x = 0 to \,\!x = b\frac{n + 1}{n + 2} b\frac{n + 1}{4n + 2} h\frac{bh}{n + 1}
    Circular sectorThe area between the curve (in polar coordinates) \,\!r = \rho and the pole, from \,\!\theta = -\alpha to \,\!\theta = \alpha\frac{2\rho\sin(\alpha)}{3\alpha}\,\!0\,\!\alpha \rho^2
    Quarter-circular arcThe points on the circle \,\!x^2 + y^2 = r^2 and in the first quadrant\frac{2r}{\pi}\frac{2r}{\pi}\frac{\pi r}{2}
    Semicircular arcThe points on the circle \,\!x^2 + y^2 = r^2 and above the \,\!x axis\,\!0\frac{2r}{\pi}\,\!\pi r
    Arc of circleThe points on the curve (in polar coordinates) \,\!r = \rho, from \,\!\theta = -\alpha to \,\!\theta = \alpha\frac{\rho\sin(\alpha)}{\alpha}\,\!0\,\!2\alpha \rho


    Why are Planets Round?

    It is always interesting to see water in space.

    Image: NASA/JPL-
    Planets are round because their gravitational field acts as though it originates from the center of the body and pulls everything toward it. With its large body and internal heating from radioactive elements, a planet behaves like a fluid, and over long periods of time succumbs to the gravitational pull from its center of gravity. The only way to get all the mass as close to planet's center of gravity as possible is to form a sphere. The technical name for this process is "isostatic adjustment."

    With much smaller bodies, such as the 20-kilometer asteroids we have seen in recent spacecraft images, the gravitational pull is too weak to overcome the asteroid's mechanical strength. As a result, these bodies do not form spheres. Rather they maintain irregular, fragmentary shapes.


    See:Isostatic Adjustment is Why Planets are Round?