Showing posts with label Topology. Show all posts
Showing posts with label Topology. Show all posts

Saturday, May 28, 2005

Mathematical Enlightenment

This enlightenment experience is a realization about the nature of the mind which entails recognizing it (in a direct, experiential way) as liminocentrically organized. The overall structure is paradoxical, and so the articulation of this realization will 'transcend' logic - insofar as logic itself is based on the presumption that nested sets are not permitted to loop back on themselves in a non-heirarchical manner. 11




This plate image is a powerful one for me becuase it represents something Greene understood well. His link on the right hand side of this blog is the admission of "cosmological and quantum mechanical readiness," to tackle the cosmological frontier.


While it is has become evident that the perspective I share and the wonders of mathematcial endowment, this basis has pointed me in the direct relationship between, brain matter and mind? Mind and mathematics?

In the West we tend to think of 'enlightenment' itself as an exceptional mental state, outside of (or separate from) ordinary states. But in many of the spiritual traditions of the East, enlightenment is described as, in essence, a 'realization' 9 about the ultimate nature of the mind. Enlightenment is really nothing but the 'ordinary' state, as seen (and experienced) from a somewhat wider perspective, as it were. This is not unlike how the Newtonian frame which describes events in the material world at a HUMAN scale can be conceived as enclosed within a wider frame of explanation that is Einsteinian.


So is there some cosmological embodiment of brain matter, once it has realized the mathmatics, that it will issue from that brain has somehow traversed, all laws of nature and transcended itself away from the curent standards set for itself. Mind, is limited by the brain matter we have?


In this metaphor, when we are seeing the donut as solid object in space, this is like ordinary everyday consciousness. When we see the donut and the hole at its center, this is like a stage of realization in which 'form' is recognized as 'empty'. When we zoom in extremely closely and inspect the 'emptiness' at the center, or zoom out an extreme distance away from the object and the donut seems to disappear and we have only empty space - this is like certain 'objectless' states of awareness that can occur in meditation. But the final goal is not to achieve the undifferentiated state itself; it is to come to the special perspective that allows us to continue to see all three aspects at once - the donut, the whole in the middle, and the space surrounding it - this is like the 'enlightened' state, in this analogy. 10 The innermost and outermost psychological 'space' (which is here a metaphor for 'concentrated attention' and 'diffused attention') are recognized as indeed the same, continuous.


So imagine the eire I could raise when I say that string theory has transcended the current status of mathematics, "brain matter controlled." That any attemtps to side swipe this new emergent quality of mathematics (what is it that has materialized?)and now we see that what lies in the cosmo is not limiteed to cosmlogical endeavors of General Relativity alone, but the deepr significance and recognition of the reductionist views of those same matters around us?

Who is going to argue with this?

I have set the standards well, that brain matters and functions if stood by, have revealled that mathematics is embodied by the brain matter with which we are dealt?

Then how shall any new mathematics form and become the responsive road to recogniton of the physics we have endured by experimentation, to say, that new roads are now to be considered? Our brain status will not allow this, because the brain matter has not be readied for this new transcendance of thinkng. We are limited by the very matters with which we like to deal?

So if string theory is to be considered in context, of the way in which the brain deals, then how could transcendance and twenty first century thinking ever prepare society for this new transcendance and viability for change in the way humanity has always seen?




This is a torus (like a doughnut) on which several circles are located. Unlike on a Euclidean plane, on this surface it is impossible to determine which circle is inside of which, since if you go from the black circle to the blue, to the red, and to the grey, you can continuously come back to the initial black, and likewise if you go from the black to the grey, to the red, and to the blue, you can also come back to the black.

Reichenbach then invites us to consider a 3-dimensional case (spheres instead of circles).






Figure 8 [replaced by our Figure 2] is to be conceived three-dimensionally, the circles being cross-sections of spherical shells in the plane of the drawing. A man is climbing about on the huge spherical surface 1; by measurements with rigid rods he recognizes it as a spherical shell, i.e. he finds the geometry of the surface of a sphere. Since the third dimension is at his disposal, he goes to spherical shell 2. Does the second shell lie inside the first one, or does it enclose the first shell? He can answer this question by measuring 2. Assume that he finds 2 to be the smaller surface; he will say that 2 is situated inside of 1. He goes now to 3 and finds that 3 is as large as 1.

How is this possible? Should 3 not be smaller than 2? ...

He goes on to the next shell and finds that 4 is larger than 3, and thus larger than 1. ... 5 he finds to be as large as 3 and 1.

But here he makes a strange observation. He finds that in 5 everything is familiar to him; he even recognizes his own room which was built into shell 1 at a certain point. This correspondence manifests itself in every detail; ... He is quite dumbfounded since he is certain that he is separated from surface 1 by the intervening shells. He must assume that two identical worlds exist, and that every event on surface 1 happens in an identical manner on surface 5. (Reichenbach 1958, 63-64)




One had to be able to maintain this positon between the inner and outer and a consistent feature of the brains ability to unite, the world outside, with the one inside?

Did we not see the ability of Time variable measures on the basis of how we see earth not mean, that we should place less significance to how Persinger asked the question, and ran contray to Lakoff and Damasio's views? One in which I postulate now too, as evidence of the transcendance needed to incoporate a much more palatable feature of the 21st century.

My evidence is, and although speaking to some ideal of enlightenment, has shown that such graduations needed to see the "Work of Iscap" as a fundmental progression of this new feature of the brain's compacity? This is part of it's evolution.

Oh, I have no views on intelligent design, so any comparisons seen, are coincidence.

Thursday, May 19, 2005

Spheres Instead of Circles







This is a torus (like a doughnut) on which several circles are located. Unlike on a Euclidean plane, on this surface it is impossible to determine which circle is inside of which, since if you go from the black circle to the blue, to the red, and to the grey, you can continuously come back to the initial black, and likewise if you go from the black to the grey, to the red, and to the blue, you can also come back to the black.

Reichenbach then invites us to consider a 3-dimensional case (spheres instead of circles).






Figure 8 [replaced by our Figure 2] is to be conceived three-dimensionally, the circles being cross-sections of spherical shells in the plane of the drawing. A man is climbing about on the huge spherical surface 1; by measurements with rigid rods he recognizes it as a spherical shell, i.e. he finds the geometry of the surface of a sphere. Since the third dimension is at his disposal, he goes to spherical shell 2. Does the second shell lie inside the first one, or does it enclose the first shell? He can answer this question by measuring 2. Assume that he finds 2 to be the smaller surface; he will say that 2 is situated inside of 1. He goes now to 3 and finds that 3 is as large as 1.

How is this possible? Should 3 not be smaller than 2? ...

He goes on to the next shell and finds that 4 is larger than 3, and thus larger than 1. ... 5 he finds to be as large as 3 and 1.

But here he makes a strange observation. He finds that in 5 everything is familiar to him; he even recognizes his own room which was built into shell 1 at a certain point. This correspondence manifests itself in every detail; ... He is quite dumbfounded since he is certain that he is separated from surface 1 by the intervening shells. He must assume that two identical worlds exist, and that every event on surface 1 happens in an identical manner on surface 5. (Reichenbach 1958, 63-64)


Wednesday, May 18, 2005

Topo-sense?



Michael Persinger has a vision - the Almighty isn't dead, he's an energy field. And your mind is an electromagnetic map to your soul.


Persinger's research forays are at the very frontier of the roiling field of neuroscience, the biochemical approach to the study of the brain. Much of what we hear about the discipline is anatomical stuff, involving the mapping of the brain's many folds and networks, aperformed by reading PET scans, observing blood flows, or deducing connections from stroke and accident victims who've suffered serious brain damage. But cognitive neuroscience is also a grab bag of more theoretical pursuits that can range from general consciousness studies to finding the neural basis for all kinds of sensations.



IN a materialistic sense I wanted to show how matter constructed phases and brain thinking, could be exemplified. Just as mathematics can, and this requirement of models of math, somehow need it's inception to arise from that same brain?

Rafael Núñez and George Lakoff have been able to give an elaborate first answer to the questions: How can advanced mathematics arise from the physical brain and body? Given the very limited mathematical capacity of human brains at birth, how can advanced mathematical ideas be built up using the basic mechanisms of conceptual structure: image-schemas, frames, metaphors, and conceptual blends?

Now I have done some home work here to say, that the thinking is leading from a brain orientated perspective, although this evidence is overwhelming, I have countered it with another thought.


Stanislas Dehaene
Like Lakoff, I am convinced that cognitive studies of mathematics will ultimately provide beautiful examples of the limits that our brains impose on our thoughts. As I tried to show in The Number Sense, we have very strong intuitions about small numbers and magnitudes, which are provided to us by a specific cerebral network with a long evolutionary history. But one could probably write another book describing the limits on our mathematical intuitions. Take topology, for instance. At home, I have a small collection of extremely simple topological brainteasers. Some of them (essentially made from a metal ring and a piece of string) are strikingly counter-intuitive ‹ our first reaction is that it is simply impossible to remove the ring, but of course it can be done in a few moves. Thus, our sense of topology is extremely poor. Yet it's easy enough to imagine a different species that would have evolved a cerebral area for "topo-sense", and for which all of my brain-teasers would be trivial


This intuitive feeling that is generated once math processes are understood are realized in dynamical movement revealled in the brains thinkng? Had to arrive from lessons it learnt previously? Pendulums, time clocks, great arcs, and gravity?

"What's Your Law?"




  • Damasio's First Law The body precedes the mind.


  • Damasio's Second Law Emotions precede feelings.


  • Damasio's Third Law Concepts precede words.


  • What if the condensation of the human brain was the reverse, of Damasio's First Law. I mean we can train the neuron pathways to be reconstructed, by establishing the movements previously damaged by stroke?

    What is the evolution of the human brain, if mind is not leading its shape?

    In Pioneering Study, Monkey Think, Robot DoBy SANDRA BLAKESLEE

    Monkeys that can move a robot arm with thoughts alone have brought the merger of mind and machine one step closer.

    In experiments at Duke University, implants in the monkeys' brains picked up brain signals and sent them to a robotic arm, which carried out reaching and grasping movements on a computer screen driven only by the monkeys' thoughts.

    The achievement is a significant advance in the continuing effort to devise thought-controlled machines that could be a great benefit for people who are paralyzed, or have lost control over their physical movements.

    In previous experiments, some in the same laboratory at Duke, both humans and monkeys have had their brains wired so they could move cursors on computer screens just by thinking about it. And wired monkeys have moved robot arms by making a motion with their own arms. The new research, however, involves thought-controlled robotic action that does not depend on physical movement by the monkey and that involves the complex muscular activities of reaching and grasping.


    Now the direct connection, is self evdient once the brains mapping is understood and connections made. In computerization the mathematical structure is very importan,t so such a math mind and the computer persons would excell if the equaitions would demonstrate the math as a model constructed. In this sense, if we think of the Torso, rotation turns 360 degrees, or 720, would somehow bring it back to it's original position.

    Monkey Moves Computer Cursor by Thoughts Alone, By E.J. Mundell


    Going one step further, her team then trained the monkey to simply think about a movement, without reaching out and touching the screen. A computer program, hooked up to the implanted electrodes, interpreted the monkey's thoughts by tracking flare-ups of brain cell activity. The computer then moved a cursor on the computer screen in accordance with the monkey's desires--left or right, up or down, wherever ``the electrical (brain) pattern tells us the monkey is planning to reach,'' according to Meeker.



    So I must put here some information to show the counter proposal.

    Lets say my own brain did concieve a process within it's own structure that I had been able to identify as a process of continuity and called it a inductive deductive process, according to that shape? Would this reveal something about my own brain, but of others as well? Hw el have tunnels served to help the mind engage a physiolgical process, to find it self decribing the math, in experience?

    The counter proposal I am making, is disguised in Persingers own words. That such a field manifested in the brain dynamics, as neuronic developmental pathways? Could this have been initiated from thinking structured born in mind and as a model assumption, somehow transformed the process of the whole brain?

    A Paradigm Change? Penetrating the unpenetrable?



    This plate image is a powerful one for me becuase it represents something Greene understood well. His link on the right hand side of this blog is the admission of "cosmological and quantum mechanical readiness," to tackle the cosmological frontier.

    How do you classify some experience where mind might have projected ahead of itself, while the neurons would become the basis of thinking. Something had to exist before a personality could develope. Personality is our man made, while deeper is the essence of that flows through to expression? How would you have concieved of this in a physiological processes? Einstein crossing the room, and in this, "higgs will have found it's comparison?" "Neurons," that fall in behind the projected mind?

    Brian Greene:
    it turns out that within string theory ... there is actually an identification, we believe, between the very tiny and the very huge. So it turns out that if you, for instance, take a dimension - imagine its in a circle, imagine its really huge - and then you make it smaller and smaller and smaller, the equations tell us that if you make it smaller than a certain length (its about 10-33 centimeters, the so called 'Planck Length') ... its exactly identical, from the point of view of physical properties, as making the circle larger. So you're trying to squeeze it smaller, but actually in reality your efforts are being turned around by the theory and you're actually making the dimension larger. So in some sense, if you try to squeeze it all the way down to zero size, it would be the same as making it infinitely big. ...


    So you look for the topological equivalent.The sphere and the torus? So there is this struggle of sorts. Where energy can flow through, in and out, and how had it changed, and this field becomes the image of gaussian curvature easily expressed in Maxwells delivery as part of some greater whole?

    But it is more then the relationship of that same cosmological partnership to reductionistc attempts at defining the beginning of the universe, will somehow have found it's relevance through the expression of the mind? The universe 's beginning?


    Melencolia II
    [frontispiece of thesis, after Dürer 1514]


    Historically this development of the geometry of consciousness was working hard to bring itself to light? The manifested realization, of those early universe indications.

    Wednesday, March 30, 2005

    Raychaudhuri Equation



    Is it sand running through our fingers, or a taffy like substance, in symbolic form?

    The difference, discretium and fluidity of nature, geometrically/topologically driven, are at war with what we might interpret in time? Early on, Salvador Dali understood well this geometrical propensity to the tesserack, that he embued his art with higher religious context(time). But in real life, he was different man?:)

    The issues were not far removed from perspective, that this battle would find itself challenged, in how we would portray the nature of reality? That it had burst forth in science and it's manifestations.

    But come back to earth, and we have to wonder indeed if this fluid is slipping through our fingers as time reveals a more intrinistic view of the reality in the cosmos?



    Sean Carroll said:Friedmann fights back:
    For those of you interested in the attempt by Kolb, Matarrese, Notari, and Riotto to do away with dark energy, some enterprising young cosmologists (not me, I'm too old to move that quickly) have cranked through the equations and come out defending the conventional wisdom. Three papers in particular seem interesting:



    Lubos Motl:Superhorizon fluctuations and accelerating Universe:
    Several physicists and bloggers, e.g. Jacques Distler, Peter Woit and especially Sean Carroll who may be considered a true expert in these questions and who added a very new article after this article of mine was published, recently noticed a paper that claimed that the cosmological constant was not needed. Instead, the accelerating expansion was conjectured to be a consequence of fluctuations of a scalar field (and the associated stress energy tensor) whose wavelength was longer than the Hubble radius i.e. the size of the visible Universe, roughly speaking.



    I agree with Lubos here in regards to what has already been establish to date in the positions. Here with Sean Carroll, Jacques Distler, Peter Woit, and Lubos Motl respectively, that they all agree on the standards set here?

    This would be a clear statement of position, and one that would signal, accepted practice on the expository view of our cosmos? Is it to ambitious?

    Out of this a standard, even if there are divergences of personality; this is wiped away, so that we are introduced to new information as Sean shows us withRaychaudhuri equation? This gives one direction to look at.

    This equation has the special characteristic that it is true without reference to the Einstein equations . That is, it is true for any spacetime. It is an intrinsic property of the volume expansion.

    Now we come back to the intuitive development from this standard presence. Would it be so wrong to ask that four minds to stand together and paper their perspective? Then open it up to geometry/topological views, in relation to how we might develop the imagery of what might have been gathered from the dynamical realization of early universe idealizations?



    In regards to the tactile experience one might want to comprehend is in the way the universe now has unfolded?

    Now there is a most definite need to grasp the issue here in terms of what causality might mean in terms of balckhole/3 brane collapse as a perspective to the dynamics that would be revealled, for photon,/graviton production from the blackhole?

    Using Calorimeter, we see where such advances help us to distinquish early universe information in Glast cosiderations, but how much more suttle has this experience need to be expanded upon, to understand the exchange that takes place in the gravitational collapse?

    John Baez:
    Now, the way Hawking likes to calculate things in this sort of problem is using a "Euclidean path integral". This is a rather controversial approach - hence his grin when he said it's the "only sane way" to do these calculations - but let's not worry about that. Suffice it to say that we replace the time variable "t" in all our calculations by "it", do a bunch of calculations, and then replace "it" by "T" again at the end. This trick is called "Wick rotation". In the middle of this process, we hope all our formulas involving the geometry of 4d spacetime have magically become formulas involving the geometry of 4d space. The answers to physical questions are then expressed as integrals over all geometries of 4d space that satisfy some conditions depending on the problem we're studying. This integral over geometries also includes a sum over topologies.
    That's what Hawking means by this:

    Stephen Hawking:I adopt the Euclidean approach, the only sane way to do quantum gravity non-perturbatively. In this, the time evolution of an initial state is given by a path integral over all positive definite metrics that go between two surfaces that are a distance T apart at infinity. One then Wick rotates the time interval, T, to the Lorentzian. The path integral is taken over metrics of all possible topologies that fit in between the surfaces.


    How would missing energy events isolate the realization that such ventures would have been specific in detailing the envelope capturing all that has evolved in our universe to know that there is this consistancy, that spreads itself through all possibiltyies of Feynman's sum over paths of expression, that still needs to be identified?

    Now you must know that there are consequences when we see this collapse take place that asks us to consider the nature of the temperatures and diameter in reduction?

    That what has been reduced in this energy developing scenarion of the cosmos in action, is a applicable view to geometry/topology that at the same time reveals the idealization of entropic features of supersymmetical views that we learn to see?

    How this experience, as tactile as I approach it, is induced, is at very illusatory experience way back in some speculative past.:)Whooh! What? Careful now, I am analogically speaking here, because I like to see this way. It feels right(not saying it is right) as simple statement quickly summing up many mathematical views in a very short and simple way. That's what I hope anyway.

    When you look at this fluid geometrically/topolgically driven what view has transpired in blackhole production? You want to be able to understand the symmetrical breaking that is taking place? Crystalization processes, would quickly surmize a Laughlin view from a fast cooling temperature, to realize, it is much more slower then this in the cooling(15 bilion year assumption) in a cosmological process?

    So we understand curvature is well aquainted with vast track of cosmological views, but it become much more diffiult at such microscopic thinking. Sort of, all smeared out in a vast supersymmetrical views of previous states of existance, that quickly gather to form maybe, cosmic strings?:)

    John Baez said,
    But you shouldn't imagine the mood as one of breathless anticipation. At least for the physicists present, a better description would be something like "skeptical curiosity". None of them seemed to believe that Hawking could suddenly shed new light on a problem that has been attacked from many angles for several decades. One reason is that Hawking's best work was done almost 30 years ago. A string theorist I know said that thanks to work relating anti-deSitter space and conformal field theory - the so-called "AdS-CFT" hypothesis - string theorists had become convinced that no information is lost by black holes. Thus, Hawking had been feeling strong pressure to fall in line and renounce his previous position, namely that information is lost. A talk announcing this would come as no big surprise.

    Friday, March 18, 2005

    Space-Tearing Conifold Transitions

    Many years ago in my doodling, I created some comparisons to what I would have percieved in describing a point, line and plane. To me, I wanted to find a way to describe this point amidst a vast background of all points, so by constructing this diagram, and by realizing coordinates, intersection of lines and planes seemed a interesting idea to get to this point.

    This brought some consideration to what was being shown by Greene below.


    The Elegant Universe, by Brian Greene, pg 326


    Now at the time, this being far removed from the stories that are developing in string theory, learning that having moved to brane considerations we can see where three brane world wrapped around a sphere could produce wonderful things for us to further ponder. That such emissions, from the gravitatinal collapse could all of a sudden produce, massless vibrating strings. We know then that such strings can be a photon or a other massless particles?:)


    The Elegant Universe, by Brian Greene, pg 327

    Part of the problem then for me is to figure out the stage of the developement of the cosmo what stage followed which stage, and the scheme within the cosmological display, the torus that had to become a sphere, or sphere collapsing to a torus? Concentrations of gravitonic expressions?

    There were geometrical consideration here to think about.

    Physicists found that a three-brane wrapped around a three-dimensional sphere will result in a gravitational field bearing the appearance of an extremal black hole, or one that has the minimum mass consistent with its force charges. Additionally, the mass of the three-brane is the mass of the black hole and is directly proportional to the volume of the sphere. Therefore, a sphere that collapses to a point as described above appears to us as a massless black hole, which will return to the discussion later.


    Now as you know from my previous thread on the Flower considerations, color is a wonderful thing, but if my view was to be consistent, then how could there be any tearing in the use of a topological structure? The flower became very symbolic to me of what we see in the universe unfolding in these galaxies?

    Two-dimensional strings trace out two-dimensional worldsheets. Since strings, according to Feynman's sum-over-paths formulation of quantum mechanics, simultaneously travel by all paths from one point to another, they are always passing by every point in space. According to physicist Edward Witten, this property of strings ensures that six-dimensional figures called Calabi-Yau spaces (theorized to be the shape of the other dimensions of our universe) can be transformed by certain topology-changing deformations called flop transitions without causing physical calamity. This is because strings are constantly sweeping out two-dimensional worldsheets that shield the flop transition point from the rest of the universe. A similar thought process goes toward the ability of Calabi-Yau spaces to undergo more drastic changes called space-tearing conifold transitions.


    In order for me to consider the comlexity of the question certain insights about the nature of our universe has pointed out that there always had to be something existing, even in face of what any of us might thought of as a singularity in that blackhole collapse. But it is not that easy.

    One had to assume that the bulk represented the continuance of some kind of flunctuating field of endeavor, that could hold our thoughts to dimensional attributes shared in the presetnation of Reimann's sphere. Gauss saw this early and gaussian coordinates also help to unite Maxwell into the glorifed picture of a dynamcial world?

    The replacement of a 1-D sphere ( a circle ) with a 0-D sphere ( two points ) can create a different topological shape. A do-nut has a circle, round its lesser diameter, which is pinched to nothing. The do-nut turns into a cresent or banana-shape, with the two end-points repaired by the two points of a zero-dimensional sphere. The torus cum cresent can now transform into a ball, without further tearing.

    This is as if Klein's hidden extra dimensions of space transformed from the one curled-up shape to another, comparably to the normal extended three dimensions changing the shape of the universe from a torus to a ball.
    The evolution of the universe may involve such transmutations between curled-up Calabi-Yau spaces.

    Equations governing the 'branes' showed that, from our limited three-dimensional view-point, the three-brane "smeared" around a three-dimensional sphere, within a ( curled-up ) Calabi-Yau space, sets up a gravitational field like a black hole.
    The space tearing conifold transition from three to two dimensional sphere happens to increase the number of holes by one. These holes determine the number of low mass particles, considered as low energy string vibration patterns. The shrinking volume of the 3-D sphere goes with a proportionate mass decrease to zero: a massless black hole.

    Friday, March 11, 2005

    Supersymmetry

    There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.
    — Nikolai Lobachevsky


    John Ellis:
    Extensions of the Standard Model often contain more discriminatory parameters, and this is certainly true of supersymmetry, my personal favourite candidate for new physics beyond the Standard Model. One of the possibilities suggested by supersymmetry is that Higgs bosons might distinguish couple differently to matter


    Without consideration of that early universe, the quantum interpretation doesn't make sense unless you include it in something whole?



    Lubos said,
    There are also many other, indirect ways how can we "go" back in time. This is what evolution, cosmology, and other fields of science are all about.



    Unsymmetrical-cooling-gravity weaker
    Expanding
    \ /
    \ /
    \ /
    _\ /___
    / \ / /
    / \ / /
    / \/ / --------300,000 years
    / / Gravity strong
    ------------- Symmetrical
    ^
    I
    seedlike

    Q-------------Quark measure is stronger

    \ /
    \ /
    \ /
    \ /
    Q--Q



    Symbolically how do you create a inclusive system, but to look at alien and foreign ways in which this logic might force you to consider the interactivity of a theory of everything? Greater quark distance, greater energy, higher gravitational field generation. The field around this distance, and supersymmetrical realization bring us closer to the source of the energy creation, closer to the source of the universe's beginnings



    ....to consider such eneregies within the sphere of M, at a quantum level, as well at such cosmological scales."


    The Bubble Universe / Andre Linde's Self Creating Universe

    These are the theories discussed in class. The bubble universe concept involves creation of universes from the quantum foam of a "parent universe." On very small scales, the foam is frothing due to energy fluctuations. These fluctuations may create tiny bubbles and wormholes. If the energy fluctuation is not very large, a tiny bubble universe may form, experience some expansion like an inflating balloon, and then contract and disappear from existence. However, if the energy fluctuation is greater than a particular critical value, a tiny bubble universe forms from the parent universe, experiences long-term expansion, and allows matter and large-scale galactic structures to form.

    The "self-creating" in Andre Linde's self-creating universe theory stems from the concept that each bubble or inflationary universe will sprout other bubble universes, which in turn, sprout more bubble universes. The universe we live in has a set of physical constants that seem tailor-made for the evolution of living things.




    It is very difficult sometimes to bring another individuals view in line with the vast resources that could point the mind to consider the whole thing?



    If you did not have a encompassing philosophy, and I know this word is dirty to some, but without pointing to a basis for which the universe sprang, then such topological features would never make sense.

    So you direct the thinking to what the early universe looked like(?), and it's potential for expression. A lot of things are going on that are not considered geometrically/topologically unfolding, which hide within the basis of expression. So you have to use analogies to nudge the mind into possible structural considerations, with evidence of graviton production?

    Notes on Hyperspace Saul-Paul Sirag
    The rule is that for n hidden dimensions the gravitational force falls off with the inverse (n + 2 ) power of the distance R. This implies that as we look at smaller and smaller distances (by banging protons together in particle accelerators) the force of gravity should look stronger and stronger. How much stronger depends on the number of hidden dimensions (and how big they are). There may be enough hidden dimensions to unify the all the forces (including gravity) at an energy level of around 1 TeV (1012 eV), corresponding to around 10-19 meters. This would be a solution to the hierarchy problem of the vast difference in energy scale between the three standard gauge forces and gravity. This is already partly solved by supersymmetry (as mentioned previously); but this new idea would be a more definitive solution--if it were the right solution!

    Monday, March 07, 2005

    Stretching the Brain

    Pettit shakes a remarkably sturdy film of water onboard the ISS. See the full-length movie: Reel 1, Reel 2.
    "Observations of nature, no matter how seemingly arcane, are like peeling off one more layer from the great onion of knowledge, tickling your imagination with what you have found but always revealing yet another tantalizing layer underneath," says Pettit.
    "I hope we never get to the core." See:Saturday Morning Science

    What strikes me as strange is how we could have percieved the language of branes, with somekind of toy model even though we can't see them. For me as a sideliner, who views the world of these theoreticists, I had to try and make sense of this language they are talking about.

    So I looked for some comparisons and geometrodynamics came into view, but I mean this couldn't have even been fathomable if we say it is hidden ,what the heck does this mean? The dimensional relevance had to be spoken and our visulizations moved beyond the euclidean points to a non euclidean world of metrics realization between these quark to quark measures.

    So in the spirit of Feynmen, how about we use these new features to help us orientate the views of the world that is hidden and help many understand the world contained in the vacuum, that many could never have comprehended?

    Lubos likes Moose horns as a analogy for Feynman path integrals?:)

    Here I would look at Dvali's analogies to move the consideration forward place within context of this post.

    It is part and parcel of the view I am developing, in relation to the geometrical/topological understanding that comes out of the view of how this universe came to be. I know this would quickly align some persepctives in that geometrical consideration. But having viewed Daniel Kabats response how would we describe non conformal geometries that arrive in the spaces Daniel speaks about?

    So any way, here is the new toy model that one should work with, and correspond developing language in relation too GR's developing views along side of the small world we all are trying to capture.

    LQG is successful here in the intersecting bubble technology(simpleces and monte carlo models in representing quantum gravity?), in regards to it's nodes, but how would string theory survive. You had to know that underlying this language is some kind of consistency. String theory represented in the graviton, points to the question for the quantum geometry/topology that will explain this unseen world that has been theorized.

    Quivering, in quark to quark measures are a interesting way in which to see the world theory spaces and not the points. The configurations space would have to explain the geometry in a way the Gaussian coordinates would help us view a dynamical world?

    Tuesday, February 01, 2005

    How many Possibilities Exist in the Now?




    What is leading our perspective in regard to what has been left in the bulk for us to consider? It is this, that roams freely and leaves for us a detailed impression about information from another time and place.

    Quickly one realizes that to trace a event that happen back in time, this information had to travel? That it could penetrate all existence and not be held to it, leads one to see the earth as a place where the information will resonate for us in our conceived views of measure in those Bars, and LIGO?



    What should human thought do, but limit the realization that such dimensional perspective does not resonate through all things? That math, of higher dimensional realization must also follow a geometrical pathway that I have commented on before in Klein's ordering of geometries?

    How could we move this idealization to topology, as some point of Hinton's circle touching the brane and leading to some idealization of a positive view of Riemann's sphere and lead too boson production, as a graviton descriptor of those same gravitational waves?

    I never thought such concepts could have ever come to some fruition, that I would have argued against the established views of one who would engage superstringtheory(Peter Woit?) and having become acquainted, would reject any hint of this flavor, as a possible definition of the reality that exists around us, and through us?





    Joseph Weber 1919 - 2000
    In the late 1950s, Weber became intrigued by the relationship between gravitational theory and laboratory experiments. His book, General Relativity and Gravitational Radiation, was published in 1961, and his paper describing how to build a gravitational wave detector first appeared in 1969. Weber's first detector consisted of a freely suspended aluminum cylinder weighing a few tonnes. In the late 1960s and early 1970s, Weber announced that he had recorded simultaneous oscillations in detectors 1000 km apart, waves he believed originated from an astrophysical event. Many physicists were skeptical about the results, but these early experiments initiated research into gravitational waves that is still ongoing. Current gravitational wave experiments, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA), are descendants of Weber's original work.


    Maybe, I should be careful here, as to the realization of gravitatinal waves having not been proven to exist? It has become well known, what GR stands for?:)



    Gravitational Radiation

    Gravitational waves have a polarization pattern that causes objects to expand in one direction, while contracting in the perpendicular direction. That is, they have spin two. This is because gravity waves are fluctuations in the tensorial metric of space-time.

    Sunday, January 30, 2005

    Civilizations Within the Cosmo

    In the recent article ‘Conflict between anthropic reasoning and observation’ (gr-qc/0303070) Ken D. Olum, using some inflation-based ideas and the anthropic premise that we should be typical among all intelligent observers in the Universe, arrives at the puzzling conclusion that ‘we should find ourselves in a large civilization (of galactic size) where most observers should be, while in fact we do not’. In this note we discuss the intriguing possibility whether we could be in fact immersed in a large civilization without being aware of it. Our conclusion is that this possibility cannot be ruled out provided two conditions are met, that we call the Subanthropic Principle and the Undetectability Conjecture. The Subanthropic Principle states that we are not typical among the intelligent observers from the Universe. Typical civilizations of typical galaxies would be hundreds of thousands, or millions, of years more evolved than ours and, consequently, typical intelligent observers would be orders of magnitude more intelligent than us. The Undetectability Conjecture states that, generically, all advanced civilizations camouflage their planets for security reasons, so that no signal of civilization can be detected by external observers, who would only obtain distorted data for disuasion purposes. These conditions predict also a low probability of success for the SETI project. We also argue that it is brane worlds, and not inflation, what dramatically could aggravate the ‘missing-alien’ problem pointed out first in the fifties by Enrico Fermi. August 2003



    I know some people have to contend with the racial slurs of Martian ancestory, but really:)We are not alone?

    In such a delightful mood, what has string theory spawned of itself? IMagine, the mathematics that could arise?



    So lets say we are in the moment.:)Lets say, that the very existance of the dimenisonal attributes from our early universe arises from the planck epoch to now, are right here as of this moment. This would mean, that time, as measured, would speak to this dimensional significance, and would reveal that the minds capabilities are far removed from such emotive sufferings of a emotive being from Mars. The intellect is a finer color of yellow:)

    String Theory, Universal Mind, and the Paranormal *



    Brian D. Josephson
    Department of Physics, University of Cambridge


    A model consistent with string theory is proposed for so-called paranormal phenomena such as extra-sensory perception (ESP). Our mathematical skills are assumed to derive from a special ‘mental vacuum state’, whose origin is explained on the basis of anthropic and biological arguments, taking into account the need for the informational processes associated with such a state to be of a life-supporting character. ESP is then explained in terms of shared ‘thought bubbles’ generated by the participants out of the mental vacuum state. The paper concludes with a critique of arguments sometimes made claiming to ‘rule out’ the possible existence of paranormal phenomena.


    So do you See how the math of this geometry/topology must arise?

    So you thought backtracking and th eissues therein were finished?. Well I could help but find that those who were disseting about Josephson, were also complaining about the same thing? You just can't win.

    See:

  • ArchveFreedom
  • Topology and Early History

    Part of the effort here is to outlay the idealization of what Genus figures means and the relationship to string amplitutdes.


    A diagram of the Königsberg bridges
    Topological ideas are present in almost all areas of today's mathematics. The subject of topology itself consists of several different branches, such as point set topology, algebraic topology and differential topology, which have relatively little in common. We shall trace the rise of topological concepts in a number of different situations.


    Part of the difficulties here for me, is understanding exactly what is going on in these higher dimensional places, that string theorists and mathematicians like to venture.


    Throughout, I have shown the processes with which a smooth topological feature would have endowed movements like the donut into the coffee cup and wondered, about this idea of Genus figures and how they to become part of the fixtures of the terrain with which mathematicians like to enjoy themselves over coffee?:)


    The idealization of string amplitutdes raised cosmological correlations in my mind as well as understanding these harmonics, so the String Amplitutde search was initiated within my blog, to lead one through other idealizationas that become evident for me.

    Monday, January 10, 2005

    The Emergence of Time, What Lies Beneath?

    The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated.

    Taken in context of how supersymmetrical levels could have ever been reached, is really a wonderful thnng to consider. If singularities were to be devised in methods that would experiementally bring forth blackholes at the microstates. Then what value is derived from learning about high energy and the levels we must go through to speak about these singularities?

    From classical discritpion of GR to the understanding that supergravity could have ever been devised as a method to live in supersymmetrical worlds, would have been a challenge indeed, and we might ask where would time would begin, and what was below time?


    The conclusion of this lecture is that the universe has not existed forever. Rather, the universe, and time itself, had a beginning in the Big Bang, about 15 billion years ago. The beginning of real time, would have been a singularity, at which the laws of physics would have broken down. Nevertheless, the way the universe began would have been determined by the laws of physics, if the universe satisfied the no boundary condition. This says that in the imaginary time direction, space-time is finite in extent, but doesn't have any boundary or edge. The predictions of the no boundary proposal seem to agree with observation. The no boundary hypothesis also predicts that the universe will eventually collapse again. However, the contracting phase, will not have the opposite arrow of time, to the expanding phase. So we will keep on getting older, and we won't return to our youth. Because time is not going to go backwards, I think I better stop now.
    by Stephen Hawking

    It becomes very difficult then for anyone to accept that Robert Laughlin might have "wondered" about about condensed matter physics to have wonder what the building blocks shall be at such levels? That he might have wanted to stay to discrete structures for explanations as far as he could tell experimentally?:)


    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the stuff that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors
    .

    You see this is okay. That one can direct their attention to such infrastructures to ask, what the ultimate building block shall be, that we constantly refocus our mind to the finer things(abstract mathematical forays into these fine building blocks), only to find, we have progress well into the cosmological view, of such microstates?

    "The path integral is taken over metrics of all possible topologies, that fit in between the surfaces. There is the trivial topology, the initial surface, cross the time interval. Then there are the non trivial topologies, all the other possible topologies. The trivial topology can be foliated by a family of surfaces of constant time. The path integral over all metrics with trivial topology, can be treated canonically by time slicing. In other words, the time evolution
    (including gravity) will be generated by a Hamiltonian. This will give a unitary mapping from the initial surface, to the final.
    "


    But to follow is this what Peter Woit thinks?

    Peter Woit said--?His argument is in Euclidean quantum gravity, which he describes as "the only sane way to do quantum gravity non-perturbatively", something which some might disagree with. What he seems to be arguing is that, while it is true you get information loss in the path integral over metrics on a fixed non-trivial black hole topology, you really need to sum over all topologies. When you do this you get unitary evolution from the trivial (no black hole) topology and the non-trivial topologies give contributions that are independent of the initial state and don't contribute to the initial-final state amplitude.

    I guess what this means is that he is claiming that, sure, if you knew you really had a black hole, then there would be a problem with unitarity, but in quantum gravity you don't ever really know that you have a black hole, you also have to take into account the amplitude for not actually having one and when you properly do this the unitarity problem goes away.


    You must accept my humble apologies, but to have been given these directions(quotes analogies in reference links and statements, from both Lubos Motl and Peter Woit, I wonder about the difference in their interpretations of the mathematics they are using? Are they so fundamntally at odds with each other, that they do not realize that they are working very close in their idealizations?



    Thursday, January 06, 2005

    Wednesday, January 05, 2005

    Tuesday, January 04, 2005

    GR Reduced From Higher Dimensions?



    Earlier in my blog, I posted a subject called the Classical discription of the quantum world

    Now it was a big leap of faith on my part that I saw these events as distilliations of a larger and more dynamic universe that cooled to proportionl views that I had related in that post. But now, this might be rejected based on the work done on this cosmological observatory, that is not mirrored from a larger proportional view of that early universe? What does this mean?

    If planck epoch arises to expansitory features revealled in our cosmos, then, early universe detection is a valid assumption of this earlier design?

    That the comments posted by Arun in the blog entitled crackpotism, contrasted to my statement, has much more discussion behind it to consider.

    Arun said: So, string theory embraces both General Relativity and not-General Relativity!!!! In other words, string theory says nothing definite.

    Plato said: And about Arun's comment about GR. Phase transitions would be reduced holographcally from higher dimensions( the standard model would have been decribed from earlier states ), would finally show up there?:)

    If one did not recognize earlier states of existence and just accepted the cosmological playground sight seen, it always existed in this form then:) That is, if we take the standard set by observation:)

    I for one thought, topological considerations would have been formulated from earlier cosmic designs, but apparently this might have been subject to scrutiny, and thought out. Rejection of the soccer ball design as well?:)


    So I guess I'll get to it here and post the following for consideration.

    The significance of the largest scale CMB fluctuations in WMAP:

    Now of course, we must remember that the way in which I am looking at this universe is that we see it in it's earlier state, as spread out(higher dimensional attributes), much like we see the discription of the early computerize version shown here .

    Computerized Model of Andrey Kravtsov.

    The current state of the universe, globally, would be a derived from some view point that represents the current shape and size of the universe. Represents its current age, to design? At least, this is what would have been derived from the sources I am considering in light of the assumption I am making, has some realistic version, that would hold to such spherical considerations. Hold on Peter Woit:)



    So such a point although subject to these phase transitions are in the end understood on the other end of the scale of consideration from that early universe to today. To what passes us by? We are attempting to measure at this point in time, what "rings true" through all of us?:)