Showing posts with label Symmetry Breaking. Show all posts
Showing posts with label Symmetry Breaking. Show all posts

Sunday, May 02, 2010

Who Has Forgotten the Child's Question?

Physicists theorize that the omnipresent Higgs field slows some particles to below light speed, and thus imbues them with mass. Are we there yet?


How many of you with children have not heard our own children speak with impatience of wanting to be "there" and having to sit a long time before this is even possible?

Well, can you imagine the patience it took to materialize the experiments at Cern, in asking fundamental question about nature? It took a lot of patience and careful planning. There is no doubt about this.

I would also ask that those that visit this blog examine the picture below, as to the nature of "First Principle," in terms of computerized data, so that you understand this in context of an algorithm written, it is but the very essence of how something could have arisen in nature, had to be written into the "data accumulation" in order for us to recognize what is at the frontier of this experiment/knowledge in question.

The question of symmetry placed in this idea of computerized data, raises the idea of the types of formations that we will used to describe data gathered by Fermi as a descriptor of cosmos events in their unfolding.




Are we there yet?

Source of Q&A from linked article above.




Q&A with the Universe


From the quest for the most fundamental particles of matter to the mysteries of dark matter, supersymmetry, and extra dimensions, many of nature’s greatest puzzles are being probed at the Large Hadron Collider.



What is the form of the universe?

Physicists created the Standard Model to explain the form of the universe—the fundamental particles, their properties, and the forces that govern them. The predictions of this tried-and-true model have repeatedly proven accurate over the
years. However, there are still questions left unanswered. For this reason, physicists have theorized many possible extensions to the Standard Model. Several of these predict that at higher collision energies, like those at the LHC, we will
encounter new particles like the Z', pronounced " Z prime." It is a theoretical heavy boson whose discovery could be useful in developing new physics models. Depending on when and how we find a Z' boson, we will be able to draw more conclusions about the models it supports, whether they involve superstrings, extra dimensions, or a grand unified theory that explains everything in the universe. Whatever physicists discover beyond the Standard Model will open new frontiers for exploring the nature of the universe.
spacer

What is the universe made of?

Since the 1930s, scientists have been aware that the universe contains more than just regular matter. In fact, only a little over 4 percent of the universe is made of the matter that we can see.Of the remaining 96 percent, about 23 percent is dark matter and everything else is dark energy, a mysterious substance that creates a gravitational repulsion responsible for the universe’s accelerating expansion. One theory regarding dark matter is that it is made up of the as-yet-unseen partners of the particles that make up regular matter. In a supersymmetric universe, every ordinary particle has one of these superpartners. Experiments at the LHC may find evidence to support or reject their existence.


Are there extra dimensions?

We experience three dime nsions of space. However, the theory of relativity states that spacecan expand, contract, and bend. It’s possible, therefore, that we encounter only three spatial dimensions because they’re the only ones our size enables us to see, while other dimensions are so tiny that they are effectively hidden. Extra dimensions are integral to several theoretical models of the universe; string theory, for example, suggests as many as seven extra dimensions of space. The LHC is sensitive enough to detect extra dimensions ten billion times smaller than an atom. Experiments like ATLAS and CMS are hoping to gather information about how many other dimensions exist, what particles are associated with them, and how they are hidden.

spacer

What are the most basic building blocks of matter?


Particle physicists hope to explain the makeup of the universe by understanding it from its smallest, most basic parts. Today, the fundamental building blocks of the universe are believed to be quarks and leptons; however, some theorists believe that these particles are not fundamental after all. The theory of compositeness, for example, suggests that quarks are composed of even smaller particles. Efforts to look closely at quarks and leptons have been difficult. Quarks are especially challenging, as they are never found in isolation but instead join with other particles to form hadrons, such as the protons that collide in the LHC. With the LHC’s high energy levels, scientists hope to collect enough data about quarks to reveal whether anything smaller is hidden inside.

Why do some particles have mass?


Through the theory of relativity, we know that particles moving at the speed of light have no mass, while particles moving slower than light speed do have mass. Physicists theorize that the omnipresent Higgs field slows some particles to below light speed, and thus imbues them with mass. We can’t study the Higgs field directly, but it is possible that an accelerator could excite this field enough to "shake loose" Higgs boson particles, which physicists should be able to detect. After decades of searching, physicists believe that they are close to producing collisions at the energy level needed to detect Higgs bosons.

Tuesday, May 12, 2009

"Bag Model," for the Economy

In this edition, as a fifth appendix, a presentation of my views on the problem of space in general and the gradual modifications of our ideas on space resulting from the influence of the relativistic view-point. I wished to show that space-time is not necessarily something to which one can ascribe a separate existence, independently of the actual objects of physical reality. Physical objects are not in space, but these objects are spatially extended. In this way the concept of “empty space” loses its meaning”. A. Einstein (June 9th, 1952)



Photo by Steve Hsu-
The first photo is the morning panel discussion. From left to right, Eric Weinstein, Nouriel Roubini, Richard Freeman and Nassim Taleb.


The Economic Crisis and its Implications for The Science of Economics.

May 1 - 4, 2009
Perimeter Institute

Concerns over the current financial situation are giving rise to a need to evaluate the very mathematics that underpins economics as a predictive and descriptive science. A growing desire to examine economics through the lens of diverse scientific methodologies - including physics and complex systems - is making way to a meeting of leading economists and theorists of finance together with physicists, mathematicians, biologists and computer scientists in an effort to evaluate current theories of markets and identify key issues that can motivate new directions for research. Perimeter Institute was suggested to be the gathering point and conference organizers plan to foster a very careful, dispassionate discussion, in an atmosphere governed by the modesty and open mindedness that characterizes the scientific community.

The conference will begin on May 1, 2009, with a day of talks by leading experts to an invited audience on the status of economic and financial theory in light of the current situation. Three days of private, focused discussions and workshops will ensue, aimed at addressing complex questions and defining future research agendas for the world that can help address and resolve them.
See: Reflections from PI’s economics conference, May 1-4 2009

***




The economy is in a ideological struggle to be free:) The more you try to pull it apart the stronger it resists.:)But in a collision, what happens. The rest, you know about?:)

Jets Provide Evidence for Quark Confinement Models




Deep inelastic scattering experiments provided the evidence that the proton and neutron are made up of three more fundamental particles called quarks . One type of experiment in the proton-antiproton colliders produces jets of mesons which correlate with the models of quark confinement. As visualized in the bag model for quark confinement, an individual quark cannot be pulled free because the energy required to do it is much greater than the pair production energy of a quark-antiquark pair. If in a high energy collision, something scatters directly off one of the constituent quarks, it will give it a high energy. With an energy many times the pair production energy, it will create a jet of quark-antiquark pairs (mesons).
See:Evidence for Quark Theory

***


At times the economy can flow quite easily, while other times, it resists. It is the elastic nature that defines the symbiotic relation of a cultural thinking about what the economy can actually permit, and what of itself, it shall not.

This is a "toposense" synesthesically imbued as relevant too, an expression of what can surround the "psychology of society?" What proof do I have that such thinking geometrically induced shall not find itself "in movement" as it is thought about, as well? Dynamically this was lead too. How one can move in straight lines and such, was moved to a new mode of thinking that excels toward a movement in thought. It is done, as if theoretically moved toward a QGP recognition of the dynamical recognition, as if, the theory of strings.

***


See Also:
  • Coin, as a Constituent of Symmetry
  • The Other Side of the Coin
  • The Toposense of Spacetime
  • Topo-sense?
  • Tuesday, March 17, 2009

    All Possible Outcomes?

    I must say to you that in my case I am asking of Calabi Yau's, can have some predictability to how universe selection is accomplished and thus any steady development in mathematics pushing that landscape to credibility?


    This entry is for representing a point of view much clearer then had been previously demonstrated in the following links shown below at the bottom of this post.

    Phil:
    I wouldn’t exactly say that the evidence presented on its own would not have been enough, yet rather that it became more quickly evident and compelling as the speaker was relaying his findings and conclusions while reliving for us his ‘eureka” moment you might say. This has the learner trade places with the discoverer as to experience the moment. Anthony Zee had the same effect on me in the book I have mentioned. Where I am certain you are correct is that despite the abilities of the teacher if one is not open to things in these ways they will never be sought to be enjoyed. This for me is the difference in simply learning a fact and realizing a truth.




    Of course I like humour and in this context, it can show another side to the coin to show that while it has a quality to it in that humour, it also has a science consideration in structure as well. The Aristotelean arch is representative here then of the moment that the climax is reached, as if telling a story about, and we know very well its meaning.

    It is the assessment of a "body of thought" that arranges itself around a progressive point of view, that while matter forming in retention times of those smaller peaks of the classroom it became the written word of the orators. You see, smaller peaks versus written transmission of the idea.

    Pg 191, Symmetry and the Beautiful Universe, by Leon M. Lederman and Christopher T. Hill

    That this place can reside in the thinking mind is a quandary of sorts knowing full well the probabilistic outcome ensures that the direction, after critical thinking, is the way in which the mind comes to see itself as it rests in the valley below. Conceptually the thinking has formed.

    Pg 200, Symmetry and the Beautiful Universe, by Leon M. Lederman and Christopher T. Hill

    ***


    You see while some are expanding their physical horizons, it is of note that I see they had been expanding their mental one too. Some have comment on the flexibility of an intelligent mind to traverse across the globe of that same thinking mind, to expand the relationships that are psycho relevant in an metaphorical relation to contract it to a humour of a kind, and a hence a deeper meaning.

    See:Backreaction-Power Spectrum

    So in all aspects while we see this relational pictorial chart it is in relation to the potential I see, that any mind might have settled down to a state to have caught the jest of the revision so that its relevance can been seen in that same relationship to the universe at large.

    So the peak in this case is a rendition of the unstableness of the pencil in relation to Cosmic inflation. That any mind might come to this position is to recognize that it has found the fastest route to the understanding of the symmetry of this universe and that th energy contained here is although unstable it is found to be expressive.




    ***


    See:
  • Coin, as a Constituent of Symmetry
  • Stargazers and Hill Climbers
  • Orators Reduced to Written Words


  • See Also:
  • The Location of the Rooms
  • The Landscape Again and again....
  • Friday, February 20, 2009

    Oh Dear!... How Technology has Changed Things

    Mathematics, rightly viewed, possesses not only truth, but supreme beautya beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as in poetry.--BERTRAND RUSSELL, Study of Mathematics


    The "Talking Pictures" Projection Wagon-
    In the 1920's about the only entertainment that came to the rural community of Leakey, Texas was the traveling tent shows. This form of family entertainment would come to the canyon about once a year to the delight of all. Everyone looked forward to the horse drawn wagons that brought the much anticipated entertainment to town. In later years the horses were replaced by the Model T Fords but this form of transportation did not deter the excitement.
    See:"Leakey's Last Picture Show" by Linda Kirkpatrick
    Vintage photos courtesy Lloyd & Jackie Shultz

    It is important sometimes to hone in on exactly what sets the mind to have it exemplify itself to a standard that bespeaks to the idealizations that can come forward from a most historical sense. It is in this way that while one can envision where the technological views have replaced the spoken word in movie pictures, we can see the theatre above as an emblazoned realization of what changes has been brought to society and what may have been lost in some peoples eyes.


    This is a photograph of author and philosopher Robert M. Pirsigtaken by Ian Glendinning on the eve of the Liverpool conference of 7th July 2005.
    What is in mind is a sort of Chautauqua...that's the only name I can think of for it...like the traveling tent-show Chautauquas that used to move across America, this America, the one that we are now in, an old-time series of popular talks intended to edify and entertain, improve the mind and bring culture and enlightenment to the ears and thoughts of the hearer. The Chautauquas were pushed aside by faster-paced radio, movies and TV, and it seems to me the change was not entirely an improvement. Perhaps because of these changes the stream of national consciousness moves faster now, and is broader, but it seems to run less deep. The old channels cannot contain it and in its search for new ones there seems to be growing havoc and destruction along its banks. In this Chautauqua I would like not to cut any new channels of consciousness but simply dig deeper into old ones that have become silted in with the debris of thoughts grown stale and platitudes too often repeated.
    Zen and the Art of Motorcycle Maintenance Part 1 Chapter 1.(Bold added by me for emphasis)

    I wanted to take the conversation and book presented by Phil and immortalize it in a way by laying it out for examination. Regardless of my opinions and viewpoint, the world goes on and the written work of Robert Pirsig persists as a "object of the material." In the beginning, no matter the choice to illuminate the ideal, it has been transgressed in a way by giving the symbols of language to a discerning mind and verily brought to that same material world for examination. How ever frustrating this may seem for Pirsig, it is a fact of light that any after word will reveal more then what was first understood. Reflection has this way about it in the historical revelation, of how the times are changing. Things dying and becoming new. The moon a reflection of the first light.


    The conclusion of the whole matter is just this,—that until a man knows the truth, and the manner of adapting the truth to the natures of other men, he cannot be a good orator; also, that the living is better than the written word, and that the principles of justice and truth when delivered by word of mouth are the legitimate offspring of a man’s own bosom, and their lawful descendants take up their abode in others. Such an orator as he is who is possessed of them, you and I would fain become. And to all composers in the world, poets, orators, legislators, we hereby announce that if their compositions are based upon these principles, then they are not only poets, orators, legislators, but philosophers.
    Plato, The Dialogues of Plato, vol. 1 [387 AD] PHAEDRUS.


    ***


    IN announcing himself in the written work with regards to the IQ given in signalling the identity of the character Phaedrus, it was important that one see this in a way that excuses are not made, and allowances not be set forth for what was to become the lone wolf. John Nash too, had his excursions into the bizarre as well, was to know that in the "end of his synopsized life," a certain contention that he had to deal with in this inflection of his disease, as part of his make-up. Was to deal with, while now, he continues to move on with his life. He is aware of the intrusions that personage can do as it infringes from the periphery, as ghosts of his mind too.

    To me in reading John Nash's biography in historical movie drama, was to bring attention to what cannot be condoned by exception, when allowing genius to display it's talents, while causing a disruption not only to themself, but to see the elite make allowances for these transgressions. Pattern seeking is not to be be rifting the idea, that we cannot look into the very structure of reality and see what makes it tick? Just that we do not get lost in travelling the journey.

    Practising escapism was to deny oneself the responsibility of becoming whole. To allow for genius, as an exception, would mean to not recognize that the intellect is part and parcel of the greater whole of the person called Robert Pirsig or John Nash.

    Who of us shall placate failure as a sure sign of genius and allow the student 's failure as acceptable? This was a transgression seen from another perspective and as afterthought realized in a mistaken perception "about broadcasting Phaedrus" as some towering voice from the past as relevant in todays world, because of the location and time in history?


    ***



    Click on link Against symmetry (Paris, June 06)

    While I may use the alias of Plato and look at the substance of his written work, it is also from that view point such a discussion had to take place within the context of the written prose about two people in this Socratic method, that while worlds in the dialogues existed in speech, no such persons were there at the time. Yet, such thoughts are transmitted and established in that historical sense, and moved forward to this time.


    Against symmetry (Paris, June 06)


    To me there are two lines of thought that are being established in science that in Lee Smolin's case is used to move away from the thinking of the idea of Plato's symmetry by example. To see such trademarks inherent in our leaders of science is too wonder how they to, have immortalize the figures of speech, while trying hard to portray the point of view that has been established in thought. These signatures have gone from Heisenberg to Hooft. And the list of names who have embedded this move to science, as a education tool, that is always inherent in the process. That reference is continually made.

    IN this sense I do not feel I had done anything wrong other then to ignite the idealization I have about what that sun means to me, as the first light in a psychological sense. Where it resides in people. How divorce we can be from it while going on about our daily duties existing in the world. That there also resides this "experience about our beginnings." To ignite what the word of geometrics has done in the abstract sense. How much closer to the reality such a architecture is revealed in Nature's way, to know that we had pointed our observations back inside, to reveal the world outside.


    ***


    See Also:

  • Stargazers and Hill Climbers



  • Evolutionary Game Theory



  • Inside the Mathematical Universe
  • Friday, November 02, 2007

    Beauty and Asymmetry

    BEHOLDING beauty with the eye of the mind, he will be enabled to bring forth, not images of beauty, but realities, for he has hold not of an image but of a reality, and bringing forth and nourishing true virtue to become the friend of God and be immortal, if mortal man may. Would that be an ignoble life? PLATO


    One would have had to understand the idea "behind symmetry realizations" to understand that "asymmetry" could have been found of value?

    Over time, people will get a sense of the thinking of Plato, and the way in which I have used his work. "The work of others" to see the way in which Plato may of saw.

    This gives one a "starting point" in contrast to today's science, and what is evident from such developments.

    I do include the spiritual basis as my "postulate about reality."

    Plato said: I then postulate that all things have existed forever. It is only our ignorance of what actually exists in reality that prevents us from understanding the full scope of our understanding of God within context of this reality.

    While one may of thought it is purely "abstractedly and mathematical by design," I am saying such thinking is not without the understanding of the asymmetrical relation of symmetry. As well as, "a relationship" to the way in which we deal with this reality.

    It is not so unlikely that shadows are cast of all the things in the beginning, that there is a "truer point of expression" still within the context of this universe. Yet, it is universal, that it lies at the basis of reality.

    See: Craftsman of Plato

    Friday, March 23, 2007

    Lingua Cosmica

    It looks as though primes tend to concentrate in certain curves that swoop away to the northwest and southwest, like the curve marked by the blue arrow. (The numbers on that curve are of the form x(x+1) + 41, the famous prime-generating formula discovered by Euler in 1774.). See more info on Mersenne Prime.

    I always find it interesting that the ability of the mind to do it's gymnastics, had to have some "background information" with which we could assign "the acrobatics of thinking" to special sequences. Thus create some commonality of exchange.

    Might we think the computerized world will give us an "human emotive side of being."

    See here for Against Symmetry explanation.

    So born from it's "original position" what asymmetry was produced to have the universe have it's special way with which it will deal with it's inhabitants? Any "point source" has a greater potential and from a "perfect symmetry" you had to know where this existed?

    Lee Smolin will then lead you away from perfect symmetry and explain why?

    G -> H -> ... -> SU(3) x SU(2) x U(1) -> SU(3) x U(1)

    Here, each arrow represents a symmetry breaking phase transition where matter changes form and the groups - G, H, SU(3), etc. - represent the different types of matter, specifically the symmetries that the matter exhibits and they are associated with the different fundamental forces of nature


    So why not think for a minute that if you had "crossed wires" how might you see the world and think, how strange a Synesthesist to have such "emotive reactions instantaneously" bring forth perceived coloured responses. Colours perhaps, as diverse as the Colour of Gravity?

    How much of a joke shall I play with peoples minds to think the choice of the observer has consequences? That those consequences are indeed coloured. If this is to much for you, and you say, "oh what a flowery pot I am with such a proposal," then think about "the concept" being used.

    The struggle for the emotive language to be explained to the everyday person, as if, the Synesthesist was being simple in their explanation? A "one inch" equation perhaps? They should be so lucky that they could explain themself while they toy with the world and try and make sense of it. That is how different it can be in finding some result of clarification.

    That is how foreign I would lead you to believe, that if I wish to communicate, that any language developed, was speaking directly to the source of all expressions, as if they had a geometrical explanation to it. Use of Riemann is understood i this way. It did not divorce him from his teacher, but added vitality tthe way in which we seen Gaussian Arcs and all.

    The Magic Square

    Hans_Freudenthal

    Hans Freudenthal (September 17, 1905 – October 13, 1990) was a Dutch mathematician born in Luckenwalde in Germany into a Jewish family. He made substantial contributions to algebraic topology and also took an interest in literature, philosophy, history and mathematics education.


    I had to think sometimes that what was common knowledge can sometimes be wrapped in up the language we use. So imagine for a time that you will go out and change the way we see the world and add this particular model of String theory just to confuse the heck out of us all.

    Lincos

    Lincos (an abbreviation of the Latin phrase lingua cosmica) is an artificial language first described in 1960 by Dr. Hans Freudenthal and described in his book Lincos: Design of a Language for Cosmic Intercourse, Part 1. It is a language designed to be understandable by any possible intelligent extraterrestrial life form, for use in interstellar radio transmissions.


    Do you want to take the time and consult with the aliens we have on this earth? :) Now surely you know I jest, because of the way in which this model asks a us to look at the world. What use you say?

    Please don't confuse this language adaptation to the "ignorance and arrogance" of the "Lincos," a being something other then the human beings who are trying to get a GRIP ON OUR PERSPECTIVES. ASKING US TO SEE IN WAY THAT WE ARE NOT TO ACCUSTOM Too.

    Were it Perfect, Would it Work Better?-Bruno Bassi

    5.1. Communication vs Formalization

    The idea of applying achievements from symbolic logic to the design of a complete language is deeply linked to a strong criticism towards the dominant 20th century trend of considering formal languages as a subject matter in themselves and of using them almost exclusively for inquiries about the foundations of mathematics. "In spite of Peano's original idea, logistical language has never been used as a means of communication ... The bounds with reality were cut. It was held that language should be treated and handled as if its expressions were meaningless. Thanks to a reinterpretation, 'meaning' became an intrinsic linguistic relation, not an extrinsic one that could link language to reality" (p. 12).

    In order to rescue the original intent of formal languages, Lincos is bound to be a language whose purpose is to work as a medium of communication between people, rather than serve as a formal instrument for computing. It should allow anything to be said, nonsense included. In Lincos, "we cannot decide in a mechanical way or on purely syntactic grounds whether certain expressions are meaningful or not. But this is no disadvantage. Lincos has been designed for the purpose of being used by people who know what they say, and who endeavor to utter meaningful speech" (p. 71).

    As a consequence, Lincos as a language is intentionally far from being fully formalized, and it has to be that way in order to work as a communication tool. It looks as though the two issues of communication and formalization radically tend to exclude each other. What Lincos seems to tell us is that formalization in the structure of a language can hardly generate straightforward understanding.

    Our Dr. Freudenthal saw very well this point. "there are different levels of formalization and ... in every single case you have to adopt the one that is most adaptable to the particular communication problem; if there is no communication problem, if nothing has to be communicated in the language, you can choose full formalization" (Freudenthal 1974:1039).

    But then, how can the solution of a specific communication problem ever bring us closer to the universal resolution of them all? Even in case the Lincos language should effectively work with ETs, how could it be considered as a step towards the design of a characteristica universalis? Maybe Dr. Freudenthal felt that his project needed some philosophical justification. But why bother Leibniz?

    Lincos is there. In spite of its somewhat ephimeral 'cosmic intercourse' purpose it remains a fascinating linguistic and educational construction, deserving existence as another Toy of Man's Designing.

    Saturday, March 10, 2007

    Relativistic Fluid Dynamics

    The Navier-Stokes equations


    A bubble is a minimal-energy surface
    The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, are a set of equations that describe the motion of fluid substances such as liquids and gases. These equations establish that changes in momentum in infinitesimal volumes of fluid are simply the product of changes in pressure and dissipative viscous forces (similar to friction) acting inside the fluid. These viscous forces originate in molecular interactions and dictate how viscous a fluid is. Thus, the Navier-Stokes equations are a dynamical statement of the balance of forces acting at any given region of the fluid.




    In educating myself I learnt to trust my intuition when it comes to defining the basis of "new physics" that was to emerge. As well as, the new particle manifestation that would arise from "specific points" on interaction. What was suppose to be our starting point. This is really difficult for me to put into words, yet, if you knew that there was a "change over/cross over point" and how was this defined? It seemed to me, we had to have a place that would do this.

    A more fundamental property than the disappearance of viscosity becomes visible if superfluid is placed in a rotating container. Instead of rotating uniformly with the container, the rotating state consists of quantized vortices. That is, when the container is rotated at speed below the first critical velocity (related to the quantum numbers for the element in question) the liquid remains perfectly stationary. Once the first critical velocity is reached, the superfluid will very quickly begin spinning at the critical speed. The speed is quantized - i.e. it can only spin at certain speeds.


    "Nothing" is difficult to talk about, and "empty space" is not really empty. So to think "nothing" is a very hard one for me to grasp. If one thinks about what "sprang into being" I of course had to find this "place of traversing" from "one state of being" to another. What things help us to define the nature of that point?



    Example of the viscosity of milk and water. Liquids with higher viscosities will not make such a splash.

    Viscosity is a measure of the resistance of a fluid to deform under shear stress. It is commonly perceived as "thickness", or resistance to flow. Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. Thus, water is "thin", having a lower viscosity, while vegetable oil is "thick" having a higher viscosity. All real fluids (except superfluids) have some resistance to shear stress, but a fluid which has no resistance to shear stress is known as an ideal fluid or inviscid fluid (Symon 1971).


    I used the question mark not to befuddle those that read here or sanction any post to some idea about what the title following with a question mark, is worth so many points on the "flowery scale."

    On the other hand, gravity in the form of curved space would permeate the whole bulk of the higher dimensional spacetime …. Stephen Hawking1


    I shall have to define "flowery scale" sometime, but I would rather not give any credit to those who hold a position in science who have categorize people according to that same point system. Oh and please, do not consider the flowers less then what I hold as of high value in these "maturations" to be thought less then either.



    While we had been witness to the collider experiments we were also quite aware that that such events had to be taking place with earth, from event sources released in space.

    Relativistic Fluid Dynamics: Physics for Many Different Scales-Nils Andersson

    In writing this review, we have tried to discuss the different building blocks that are needed if one wants to construct a relativistic theory for fluids. Although there are numerous alternatives, we opted to base our discussion of the fluid equations of motion on the variational approach pioneered by Taub [108] and in recent years developed considerably by Carter [17, 19, 21]. This is an appealing strategy because it leads to a natural formulation for multi-fluid problems. Having developed the variational framework, we discussed applications. Here we had to decide what to include and what to leave out. Our decisions were not based on any particular logic, we simply included topics that were either familiar to us, or interested us at the time. That may seem a little peculiar, but one should keep in mind that this is a “living” review. Our intention is to add further applications when the article is updated. On the formal side, we could consider how one accounts for elastic media and magnetic fields, as well as technical issues concerning relativistic vortices (and cosmic strings). On the application side, we may discuss many issues for astrophysical fluid flows (like supernova core collapse, jets, gamma-ray bursts, and cosmology).

    In updating this review we will obviously also correct the mistakes that are sure to be found by helpful colleagues. We look forward to receiving any comments on this review. After all, fluids describe physics at many different scales and we clearly have a lot of physics to learn. The only thing that is certain is that we will enjoy the learning process!


    Spacetime Curvatures

    Flat space time? The thought there are strong gravitational forces at work and where are these located? Can there "be" amidst this strong curvature, the idea that a super fluid born, would have a place where a state of inertia could exist? I thought quickly of what happens when the blackhole collapses and what could come of it?

    Of course this concept of inertia is strong in my mind but would need better clarifications as I am relaying it here in this circumstance.

    But looking for these locations in Lagrangian views of the Sun Earth relation, it seemed viable to me that such a state could have gone from a very strong gravitational inclination( our suns, increase temperatures of the collapsing blackhole) to one that is "very free" and "not flat" but would allow information both ways(from before to now) to be traversed, as if in a jet or cylinder. So that the space around it would be expression not only the earlier constituents of the universe before this translation but manifest into the new physics with which would motive this universe, new particle manifestation, from what did not exist before.

    1The Universe in a Nutshell, by Stephen Hawking. Bantam Books, ISBN 0-553-80202-X-Chapter 7, Page 181

    Tuesday, February 20, 2007

    The Perfect Sphere

    Before I begin I had to mention the following two entries below that I wanted to do but was short on time.

    This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.


    I am following behind on the different posts that I wanted to write. One of them in relation to the descent of a "measure gatherer" (sounds primitive doesn't it?) and the sound values produced from that "descent on Titan." Can make it "sound ancient" while current research is of value.

    Almost, as if one is a cave dweller blowing dried paint over their hands, could possibly be thinking of fire and rays cast while their own shadows made them think of a sun that can enter the cave, and chains that need to be broken from thinking so circumspect..:)



    The second one I wanted to talk about was in relation to Themis and the Aurora Borealis. The labels will hopefully help with my previous research that I had done as well as other perspectives that allowed me to see this sun earth relationship. Quasar has currently dealing with that topic further in "Coronal Mass Ejection" as well and Backreaction entitled, "NASA launch of THEMIS Satellite."

    Anyway on to the essence of this post and why it is troubling to me. Many would not know what goes on in my head as I am currently looking at the relationship of the Bose Nova to the jet productions that issue from such spiralled tendency. Accretion disc and the idea of such spiralling, to a pipe that follows to making anti-matter productions?

    See Water in Zero Gravity, by Backreaction
    How did this all arise? So you see such an idea of the sphere in a vacuum is a point from which to begin the search for things that were not there before, so we now know that such collisions can indeed produce "new" information?

    The action taken, although seems related to what Arivero is saying, and of course I already have much on this in terms of Han Jenny, and the taking of the Chaldni plate to spherical relations. As an experiment with a "balloons and dyes using sound" similar to "sand on that same chaldni plate."

    The Perfect Sphere and Sonoluminence.

    Taleyarkhan.A second internal inquiry has found no evidence of misconduct.Credit: Purdue News Service
    Purdue University officials today announced that a second and final internal inquiry has cleared bubble-fusion researcher Rusi Taleyarkhan of all allegations of research misconduct. "I feel vindicated and exonerated," Taleyarkhan says. "It's been a pressure cooker for about a year." But controversy surrounding Taleyarkhan's work isn't likely to die down any time soon.

    Taleyarkhan is the chief proponent of the controversial notion of sonofusion, which suggests that sound energy can collapse bubbles in a way that yields more energy than was initially put in (ScienceNOW, 4 March 2002). Last year, an article in Nature reported that several of Taleyarkhan's colleagues at Purdue were upset by their encounters with him, suggesting that he allegedly obstructed their work and tried to stop them from publishing results that contradicted his own.


    There has been some contention about the results, but this is far from what I wanted to show in terms of the geometrics involved. Patience as to the energy produced from this interaction of "sound on the surface transferred inside" to cause a spherical collapse.


    Experimental apparatus used by the team at the University of Stuttgart. PMT = photomultiplier tube, PZT = piezoelectric transducer. Picture credit: Physical Review Letters
    German researchers have measured the duration and shape of a sonoluminescence pulse for the first time. Sonoluminescence - the emission of light by bubbles of gas trapped in a liquid and excited by sound waves - is one of the most puzzling phenomena in physics. Although first discovered in 1934, physicists have yet to discover the underlying light emitting process.


    Seeing the tensorial action on the bubble moving sound inside, I had wondered about how such a collapse could increase the temperatures involved to produce this "super higgs fluid." Lubos Motl never gave this much thought and I of course am impressionable when it comes to the science mind. I could not shake it.

    Ultrasound can produce temperatures as high as those on the surface of the Sun and pressures as great as those at the bottom of the ocean. In some cases, it can also increase chemical reactivities by nearly a millionfold.


    So we "assign fluids" as one might the "vacuum in space" to illustrate what we have as our way with these bubbles? These claims have not been fantastical other then what the science had been designed for, yet I am drawn to the schematics and geometrics.

    So yes the ways in which the size of the blackhole could all of sudden collapse is critical here, to producing further results in what is required of the new physics? So looking for "such experimental processes" is always part of my resolve to understand the geometrics involved.

    Please be patient while I am learning.


    Axisymmetry is also broken in the fluid bells, which assume the form of polyhedra


    See further information in regards to Broken Symmetry.

    So the idea here that was troubling was the way in which the symmetry was broken in terms of the fluid flows demonstrated by the Broken Symmetry examples.

    My perception is much different here in that the dynamical relation of "the super fluid", may have it's correlation in the Navier stokes equations. This is by "insinuation on my part." How preposterous such a thing to think that the conditions had to be "spelt out first" in order for us to understand the "new physics" beyond the standard model?

    Navier-Stokes Equations

    The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, are a set of equations that describe the motion of fluid substances such as liquids and gases. These equations establish that changes in momentum in infinitesimal volumes of fluid are simply the product of changes in pressure and dissipative viscous forces (similar to friction) acting inside the fluid. These viscous forces originate in molecular interactions and dictate how viscous a fluid is. Thus, the Navier-Stokes equations are a dynamical statement of the balance of forces acting at any given region of the fluid.


    Using the geometrical basis of my thought pattern established as a point in a circle, or a point with "no boundary", it seems it is very difficult to talk about the universe if one does not include the way in which such dynamicals can perpetuate the energy within this system.

    In fact, in the reciprocal language, these tiny circles are getting ever smaller as time goes by, since as R grows, 1/R shrinks. Now we seem to have really gone off the deep end. How can this possibly be true? How can a six-foot tall human being 'fit' inside such an unbelievably microscopic universe? How can a speck of a universe be physically identical to the great expanse we view in the heavens above?

    (Brian Greene, The Elegant Universe, pages 248-249)


    Thus too, the understanding, that if you turn Einstein's equation E=mc2 inside/out then what had you done? All "matter states" have then been assigned a energy value? Qui! Non?

    Plato:
    Layman scratching head while faceless expression of Boltzmann puzzlement takes hold?

    How is one suppose to find "a equilibrium" in such a "low entropic state?"

    If we were to experimentally challenging any thinking with "relativistic processes" how could they have ever emerged out of the BB? Maybe, it was a "highly symmetric event" for any asymmetry to show itself as "discrete measures" defined in relation to the "energy of probable outcomes?"

    Where did such reductionism begin for us to ask about the "cross over?"

    We needed high energy perspective to realize that we were still talking about the universe. Are there any other processes within the cosmos that can be taken down to such rejuvenated qualities to new universes being born that while the arrow of time is pointed one way, that the universe itself allowed such expression to continue in the expansion rate, and the speed up?

    A Higg's fluid? Something had to be "happening now" that would dictate?

    Forgive me here for my ignorance in face of those better equipped.


    So you are looking for "this point" where things cross over? It is highly supersymmetric, yet, we know that such matter states have been detailed and defined as "discrete" asymmetric matter states.

    I made a comment above that needed to be looked at again so I am placing it here while it suffers it's fate in another location. The basis of the argument is an ole one indeed that has long been exchanged by Smolin and Susskind.

    Now it is again one of those things that I am trying to make sense of while one could go off in a philosophical direction. While the "facts of the matter" and experimental results dictate my thinking here.

    It's the fault of that ole' Platonic thinking, and the Pythagorean basis of the universe in expression thingy. The universe is very dynamical geometrically while one debates the essence of inflation and disregards what allows such an expression to bring "other ideas" into the fold. How this "eternal idea" can bring other factors in terms of the speed up into consideration, while one ponders why such a thing is happening?

    Neutrino Oscillations? Hmmmm.......

    Oscillating flavors The three neutrino mass eigenstates are presumed to be different coherent superpositions of the three flavor eigenstates (ne, nm, and nt) associated with the three charged leptons: the electron, the muon, and the tau. There is good evidence that only two of the three mass eigenstates contribute significantly to ne. In that approximation, one can write

    Just another fancy way of looking at CNO and the law of Octaves? :) While some thought space was empty, there were aspects of that space "which was alive" regardless of the asymmetrical realization of the discrete matters?

    I'm trying here. You needed a background for it?

    The triple alpha process is highly dependent on carbon-12 having a resonance with the same energy as helium-4 and beryllium-8 and before 1952 no such energy level was known. It was astrophysicist Fred Hoyle who used the fact that carbon-12 is so abundant in the universe (and that our existence depends upon it - the Anthropic Principle), as evidence for the existence of the carbon-12 resonance. Fred suggested the idea to nuclear physicist Willy Fowler, who conceded that it was possible that this energy level had been missed in previous work on carbon-12. After a brief undertaking by his research group, they discovered a resonance near to 7.65 Mev.

    Now I am not pro or against anything, just trying to make sense of the disparity of such anthropic reasonings. So what processes in Cern reveals such an idea? Muons?

    What's that saying? The devil is in the details :)


    So we want to define our relationship with the world in some computerized method? It has always been something of a struggle to explain how one may see the world as they lose the focus of distinctive sight and hearing and soon realize that if they are all amalgamated, you might get this idea of the gravitationally inclined atomized in some computerized process? Feelings?:)

    You finally learnt something about yourself?


    A thought crossed my mind. A fictional story?

    It’s interesting what calorimetric measure can do when you are looking at cosmological events. So, the photon becomes descriptive in itself?

    Of course speaking of Glast here. Building alliances?


    Perhaps Quantum Gravity can be Handled by thoroughly reconsidering Quantum Mechanics itself?

    You are working “to set” the course of events? So we have this description then of the universe and it’s “phase transitions.” It’s behind the “value of the photon in it’s description and escape velocity” and it’s value also “gravitationally linked?”

    So technology now stops the photon in flight? We can then “colour our views with the gravitationally inclined?”:) A “philosophical take” on new computerized development with feeling?


    The leading computer technologies here is not to diverge from what I moved too in terms of understanding the human condition. This is very important to me, and includes not only our biological functioning, but our resulting affect from the physiological one as well.

    So while "you think" I hope to chart the colours spectrally induced oscillatory universe from the "photon stop over" and subsequent information held in that abeyance. Sure it's a story of fiction right now, but in time I would like to see this connection to reality.

    It may only rest at this time in conceptual framework that was constructed from what was available in the physics and science at our disposal, while I had to move forward slowly.

    It was important to understand why there would be such divergences in perspective and how these would be lined up? Some of course did not want to take the time, but it was important to me to understand the "philosophical position" taken.



    One could just as well venture to the condense matter theorist and said, what building blocks shall we use? One should not think the "history of Platonism" without some "other influences" to consider. Least you assign it to a "another particular subject" in it's present incarnation? An Oscillatory String Universe?

    So the evolution here is much more then the "circumspect of the biological function," but may possible include other things that have not been considered?

    Physiologically, the "biological function" had some other relation? So abstract that I assigned the photon? So I said "feelings," while Einstein might assigned them to a "short or long time" considering his state of mind? :)

    More thought of course here on the "fictional presentation" submitted previous. As a layman I have a problem in that regard. :)


    So no one knows how to combine thermodynamics and general relativity? Hmmm....Boltzmann puzzle..hmmmmm...and I slowly drift off in thought.

    Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

    How does relativity ever arise out of such a situation? If "tunnelling was to occur" where would it occur, and where would "this equilibrium" find comparative Lagrangian relations in the universe? These perspectives are leading to what we see in the WMAP polarization patterns?

    Are there not "comparative features" that allows for the low entropic states, within the existing universe? Allows us to return to those same entropic states in their respective regions, while "feeding" the universe?

    You had to look for the conditions that would be similar would you not? And "supporting evidence" to explain the current universe speeding up. These conditions would have to support that contention.



    I am holding off producing any new posts until I can bring the discussion to a suitable ending where Lee Smolin admits the ideas are not yet completed in terms of of our understanding of the landscape?

    Clifford has a good humour post about real estate in the extra dimensions. Of course you had to follow other discourses here to understand how one may view what is "current in the thinking?"

    This "balance in perspective" is not just one or the other but on how such perspective is formed around it. So on the one hand you have this Anthropic approach in string theory, and then you have the "philosophical differences on the other?"

    Your trying to explain it and in so doing revealing the train of thought that was established. One does not disavow the road leading to the physics established of course, and no where is this intentional on differing perspectives

    Lee Smolin: "Here is a metaphor due to Eric Weinstein that I would have put in the book had I heard it before. Let us take a different twist on the landscape of theories and consider the landscape of possible ideas about post standard model or quantum gravity physics that have been proposed. Height is proportional to the number of things the theory gets right. Since we don’t have a convincing case for the right theory yet, that is a high peak somewhere off in the distance. The existing approaches are hills of various heights that may or may not be connected, across some ridges and high valleys to the real peak. We assume the landscape is covered by fog so we can’t see where the real peak is, we can only feel around and detect slopes and local maxima.

    Friday, December 15, 2006

    Johannes Kepler: The Birth of the Universe

    I measured the skies, now the shadows I measure,
    Sky-bound was the mind, earth-bound the body rests
    Kepler's epitaph for his own tombstone


    I always like to go back as well and learn the historical, for it seems to pave the way for how our good scientists of the day, use these times to begin their talks.

    From the outset, then, symmetry was closely related to harmony, beauty, and unity, and this was to prove decisive for its role in theories of nature. In Plato's Timaeus, for example, the regular polyhedra are afforded a central place in the doctrine of natural elements for the proportions they contain and the beauty of their forms: fire has the form of the regular tetrahedron, earth the form of the cube, air the form of the regular octahedron, water the form of the regular icosahedron, while the regular dodecahedron is used for the form of the entire universe. The history of science provides another paradigmatic example of the use of these figures as basic ingredients in physical description: Kepler's 1596 Mysterium Cosmographicum presents a planetary architecture grounded on the five regular solids.


    Perhaps on an "asymmetrical recognition" of what becomes the "matter distinctions" of form, from "another world perspective" to what beauty and harmony mean and housed within the definitions of symmetry.

    So while you may have been fast track by Lee Smolin in his lecture talk in Paris of 2006, think carefully about what the Platonic tradition means, and what is revealed of the "asymmetrical/entropically challenged views developed from the high energy sector.


    Johannes Kepler (December 27, 1571 – November 15, 1630)
    For instance, Kepler was explicit about the intellectual safeguards that, in his view, the Christian faith provided for scientific speculation. In connection with the apriorism of the world view of antiquity (a good example is the Platonic dictum Ex nihilo nihil fit—nothing is made from nothing), he wrote: "Christian religion has put up some fences around false speculation in order that error may not rush headlong" (Introduction to Book IV of Epitome astronomae copernicanae, c1620, in Werke Vol. VII p. 254).


    So even though Platonic contrast the Pythagorean views, Plato has an idea about what existed before all things manifested. So to think such solids could have made their way into the various forms, what were these descriptions, if not for the very idea of the birth of the universe of Kepler's time?


    Kepler's Platonic solid model of the Solar system from Mysterium Cosmographicum (1596)


    So in speaking to the information based on symmetries how could one have formed their perspectve and then lined up one line of thought with another?

    Philosophically, permutation symmetry has given rise to two main sorts of questions. On the one side, seen as a condition of physical indistinguishability of identical particles (i.e. particles of the same kind in the same atomic system), it has motivated a rich debate about the significance of the notions of identity, individuality, and indistinguishability in the quantum domain. Does it mean that the quantum particles are not individuals? Does the existence of entities which are physically indistinguishable although “numerically distinct” (the so-called problem of identical particles) imply that the Leibniz's Principle of the Identity of Indiscernibles should be regarded as violated in quantum physics? On the other side, what is the theoretical and empirical status of this symmetry principle? Should it be considered as an axiom of quantum mechanics or should it be taken as justified empirically? It is currently taken to explain the nature of fermionic and bosonic quantum statistics, but why do there appear to be only bosons and fermions in the world when the permutation symmetry group allows the possibility of many more types? French and Rickles (2003) offers an eccellent and updated overview of the above and related issues.

    Thursday, December 14, 2006

    Against Symmetry

    The term “symmetry” derives from the Greek words sun (meaning ‘with’ or ‘together’) and metron (‘measure’), yielding summetria, and originally indicated a relation of commensurability (such is the meaning codified in Euclid's Elements for example). It quickly acquired a further, more general, meaning: that of a proportion relation, grounded on (integer) numbers, and with the function of harmonizing the different elements into a unitary whole. From the outset, then, symmetry was closely related to harmony, beauty, and unity, and this was to prove decisive for its role in theories of nature. In Plato's Timaeus, for example, the regular polyhedra are afforded a central place in the doctrine of natural elements for the proportions they contain and the beauty of their forms: fire has the form of the regular tetrahedron, earth the form of the cube, air the form of the regular octahedron, water the form of the regular icosahedron, while the regular dodecahedron is used for the form of the entire universe. The history of science provides another paradigmatic example of the use of these figures as basic ingredients in physical description: Kepler's 1596 Mysterium Cosmographicum presents a planetary architecture grounded on the five regular solids.





    The basic difference that I see is the way in which Lee Smolin adopts his views of what science is in relation too, "Two traditions in the search for fundamental Physics."

    It is strange indeed to see perfection of Lee Smolin's comparison and having a look further down we understand the opening basis of his philosophical thoughts in regards to the title "against symmetry?"

    Some reviews on the "Trouble With Physics," by Lee Smolin

  • Seed Magazine, August 2006
  • Time magazine August 21, 2006
  • Discover Magazine, September 2006 &
  • Scientific American, September 2006
  • Wired September 2006:15 :
  • The Economist, Sept 14, 2006
  • The New York Times Book review, Sep 17, 2006 by Tom Siegfried
  • The Boston Globe, Sept 17, 2006
  • USA Today, Sept 19, 2006
  • The New York Sun, by Michael Shermer, Sept 27, 2006
  • The New Yorker,  by Jim Holt Sept 25,2006
  • The LA Times, by K C Cole, Oct 8, 2006
  • Nature,
  • by George Ellis (Nature 44, 482, 5 Oct. 2006)
  • San Fransisco Chronicle , by Keay Davidson, Oct 13, 2006
  • Dallas Morning News, by FRED BORTZ, Oct 15, 2006
  • Toronto Star, by PETER CALAMAI, Oct 15, 2006


  • But before I begin in that direction I wanted people to understand something that is held in the mind of the "condense matter theorist." In terms of the building blocks of nature. This is important basis of understanding, that any building block could emergent from anything, we had to identify where this symmetry existed, before it manifested in the "matter states of reality."

    Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.


    So it is important to understand what is emergent and what exists in the "theory of everything" if it did not consider the context of symmetry? AS a layman trying to get underneath the thinking process of any book development, it is important to me.

    Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics dictates physics.


    The idea here then is to find super strings place within context of the evolving universe, in terms of, "the microseconds" and not the "first three minutes" of Steven Weinberg.

    So it is important to see the context with which this discussion is taking place, in terms of the high energy and from that state of existence to what entropically manifests into the universe now.

    Confronting A Position Adopted By Lee Smolin


    A sphere with three handles (and three holes), i.e., a genus-3 torus.

    This is only "one point of contention" that was being addressed at Clifford Johnson's Asymptotia.

    Jacques Distler :

    This is false. The proof of finiteness, to all orders, is in quite solid shape. Explicit formulæ are currently known only up to 3-loop order, and the methods used to write down those formulæ clearly don’t generalize beyond 3 loops.

    What’s certainly not clear (since you asked a very technical question, you will forgive me if my response is rather technical) is that, beyond 3 loops, the superstring measure over supermoduli space can be “pushed forward” to a measure over the moduli space of ordinary Riemann surfaces. It was a nontrivial (and, to many of us, somewhat surprising) result of d’Hoker and Phong that this does hold true at genus-2 and -3.


    There is no doubt that the "timeliness of statements" can further define, support or not, problems that are being discussed. I don't mind being deleted on the point of the post above, because our good scientist's are getting into the heat of things. I am glad Arun stepped up to the plate.

    Part of finally coming to some head on debate, was seeing how Peter Woit along with Lee Smolin were being challlenged for their views, while there had been this ground swell created against a model that was developed, like Loop quantum gravity was developed. One of the two traditions in search for the fundamental physics. Loop qunatum Gravity and String theory(must make sure there is the modification to M theory?) Shall this be included?


    Click on link Against symmetry (Paris, June 06)

    But as they are having this conversation, it is this openness that they have given of themselves that we learn of the intricacies of the basis of arguments, so the public is better informed as to what follows and what has to take place.


    Against symmetry (Paris, June 06)

    So while this issue is much more complex then just the exchange there, I have not forgotten what it is all about. Or why one may move from a certain position after they have summarize the views they had accumulated with regards to the subject of String/M theory as a model that has out lived it's usefulness, in terms of not providing a experimental frame work around it.