Showing posts with label Space Station. Show all posts
Showing posts with label Space Station. Show all posts

Thursday, August 11, 2011

The Alpha Magnetic Spectrometer Experiment )02

Credit: NASA/JSC, NASA

During the 14-day mission, Endeavour delivered the Alpha Magnetic Spectrometer (AMS) and spare parts including two S-band communications antennas, a high-pressure gas tank and additional spare parts for Dextre. This was the 36th shuttle mission to the International Space Station. STS-134 Mission Information



See:

HOW LONG – THE STORY OF AMS-02

July 31st, 2011 
In this video 16 years of preparation of AMS-02 become few blinks. The construction of AMS-02 is the result of a  worldwide effort undertaken by scientists from 16 different countries who now started analyzing the wealth of data downlinked from the ISS, looking for new, unexpected phenomena.

For me, following the story "on land"  by our own  innovators to understanding the energy valuations outputs and the many tree designs as Feynman pathways of particulate expressions has been very interesting. The pathways are designated motivation-ally and expressively, to see and reveal the level of experimental verification needed in looking at the results for confirm hypothesis and theoretical expectations. Proposals on what we might find. In AMS case and in Fermi,  we are counting these motivations from not only our sun , but from deep space as well.

See: BaBar: evidence for a charged Higgs boson

So in a sense should one also collaborate with what one can evaluate out in space with what one is evaluating on the ground with regard to Babar and LHC?

Any thoughts or opinions on that?

Monday, June 20, 2011

Body Self Perception

Body Self  Perception

For me it is sort of like trying to define the space around you and the depth perception one has of that space. It is also about location and whether awareness can pick up on other thing happening within that environment,
 while circumvented to the virtual reality.

This idea is one where I developed the term Topo-sense as a geometrical exercise of the awareness to move itself in complex organizational movements,  as if being lead by some geometrical mapping. Mathematically this seemed correlative in the construction of geometrical movements , as well "the archiving" and unfolding of geometrical form. Why Arizona might be of importance?

***

"What's Your Law?"



Damasio's First Law The body precedes the mind.

Damasio's Second Law Emotions precede feelings.

Damasio's Third Law Concepts precede words.






***

Michael Persinger has a vision - the Almighty isn't dead, he's an energy field. And your mind is an electromagnetic map to your soul.

It is necessary to look at the space around you understanding self awareness can extend itself into that space.

"The Mind is Inherently Embodied"

Our brains take their input from the rest of our bodies. What our bodies are like and how they function in the world thus structures the very concepts we can use to think. We cannot think just anything - only what our embodied brains permit."

I want science of course and all we are doing is playing with mind, and mapping the condensation result of mind at work in the biological system?

You see how one can change parameters, one can see things differently?

The inductive/deductive phase is really "an interaction" with the world around you. A topological change? Toposense? Turning yourself inside/out and back again.

***


What we have learned

We have found consciousness can be described as an emergent property of the complex electromagnetic process generated from predictable biochemical and biological processes.
Although the terms soul and mind may have been useful at one time to describe this process, they are no longer required. They are more like the term "phlogiston" that was employed to describe why things burned before modern chemistry emerged. When there is no electrical current moving through the parts of a television, there is no picture. When the specific electromagnetic patterns are not generated within the brain structures there is no consciousness or awareness.

Some individuals with very different brain structures show different electromagnetic correlates that are associated with their ability to discern stimuli others cannot detect. Counter clockwise rotation of weak magnetic fields around the skull at specific rates of change (derivatives) can affect subjective time and allow the average person to experience many of the altered states reported by practitioners of mystical traditions as well as "paranormal" phenomena. The critical variables, like any chemical reaction, are the complexity and specificity of the temporal parameters. One component of consciousness may be "sequestered" within second or third derivatives of very narrow bands of changes in frequency within the theta range. Our calculations of resonance, based upon the power changes within quantitative electroencephalographic measures, suggest that one electromagnetic source of consciousness may actually exist within the 10 cm region outside of and surrounding the cranium.
Link now dead.

Of course one might want to be connected to how the parameters here in this blog were developed, so as to change how science currently does it?

Here again(your awareness of a red light bulb while in virtual reality can consciously penetrate) what you cannot see in the science of "in that space" is the interactive reality of what our emotions emit, or, what we demonstrate intellectually. Let's just say it is colored for emphasis, and that there is a method, just that we have not developed the science to see in such ways? "Not just the biological result of" looking through our measure fMRI?

With the parameter change given read these books and see how from my perspective things appear differently?  An alternate reality?

I am not saying you have to accept it, just that you look at the space I am talking about and how we may place light bulbs, as if to see if our conscious can penetrate through the virtual,  that it can exist outside of the body. This the central idea of what I am saying.

That the excelling of principle and your soul's desire for such perfection is ultimately contained within you and within the environment you work and live. Can exist in as a type of consciousness apart from the body itself.

While such generalizations are not accepted in science, it is food for thought that I give in consideration.

Saturday, June 04, 2011

Space Travel and Propulsion Methods

As a layman, my interest has been mainly focused on gravity and a means to defy it. How one can see in different ways.

The Lagrange Points

In the above contour plot we see that L4 and L5 correspond to hilltops and L1, L2 and L3 correspond to saddles (i.e. points where the potential is curving up in one direction and down in the other). This suggests that satellites placed at the Lagrange points will have a tendency to wander off (try sitting a marble on top of a watermelon or on top of a real saddle and you get the idea). A detailed analysis (PDF link) confirms our expectations for L1, L2 and L3, but not for L4 and L5. When a satellite parked at L4 or L5 starts to roll off the hill it picks up speed. At this point the Coriolis force comes into play - the same force that causes hurricanes to spin up on the earth - and sends the satellite into a stable orbit around the Lagrange point.
Seeing space in a different light helps one to adjust perspective abut the universe and the possibilities of travel. There is indeed a abstractness to such ideas that when one sees the universe in a geometrical way, it helped to push my perspective about tunnels in space. How sound may be used to image WMAP.  The three body problem application toward identification of those L positions.

What position is the Space Station occupying?

Warp Drives", "Hyperspace Drives", or any other term for Faster-than-light travel is at the level of speculation, with some facets edging into the realm of science. We are at the point where we know what we do know and know what we don’t, but do not know for sure if faster than light travel is possible.

The bad news is that the bulk of scientific knowledge that we have accumulated to date concludes that faster than light travel is impossible. This is an artifact of Einstein’s Special Theory of Relativity. Yes, there are some other perspectives; tachyons, wormholes, inflationary universe, spacetime warping, quantum paradoxes...ideas that are in credible scientific literature, but it is still too soon to know if such ideas are viable.

One of the issues that is evoked by any faster-than-light transport is time paradoxes: causality violations and implications of time travel. As if the faster than light issue wasn’t tough enough, it is possible to construct elaborate scenarios where faster-than-light travel results in time travel. Time travel is considered far more impossible than light travel.

 ***

ADVANCED SPACE PROPULSION BASED
ON VACUUM (SPACETIME METRIC) ENGINEERING by HAROLD E. PUTHOFF
Institute for Advanced Studies at Austin, 11855 Research Blvd., Austin, Texas 78759, USA.

A theme that has come to the fore in advanced planning for long-range space exploration is the concept that empty space itself (the quantum vacuum, or spacetime metric) might be engineered so as to provide energy/thrust for future space vehicles. Although far-reaching, such a proposal is solidly grounded in modern physical theory, and therefore the possibility that matter/vacuum interactions might be engineered for space-flight applications is not a priori ruled out [1]. As examples, the current development of theoretical physics addresses such topics as warp drives, traversable wormholes and time machines that provide for such vacuum engineering possibilities [2-6]. We provide here from a broad perspective the physics and correlates/
consequences of the engineering of the spacetime metric.

***

Concept of the Alcubierre drive, showing the opposing regions of expanding and contracting spacetime that propel the central region
The Alcubierre drive, also known as the Alcubierre metric, is a speculative mathematical model of a spacetime exhibiting features reminiscent of the fictional "warp drive" from Star Trek, which can travel "faster than light", although not in a local sense.

See Also: Hypothetical Methods of Space Craft propulsion

Monday, April 25, 2011

LRO's Crater Science Investigations



If you want to learn more about the history of Earth and other rocky planets in the solar system, craters are a great place to look. Now, thanks to LRO's LROC instrument, we can take a much closer look at Linné Crater on the moon--a pristine crater that's great to use to compare with other craters! See: LRO's Crater Science Investigations



The life cycle of a lunar impact and associated time and special scales. The LCROSS measurement methods are “layered” in response to the rapidly evolving impact environment. See: Impact:Lunar CRater Observation Satellite (LCROSS)



Data from the ultraviolet/visible spectrometer taken shortly after impact showing emission lines (indicated by arrows). These emission lines are diagnostic of compounds in the vapor/debris cloud.
Credit: NASA


LCROSS Impact Data Indicates Water on Moon11.13.09






 ***
 

It is important that we establish an outpost on the moon in order to progress further out into the universe. A lot of work has to be done to venture further out, so that we may explore.

Click on Image


See Also: Plato's Nightlight Mining Company

Sunday, April 17, 2011

Space

Space is the boundless, three-dimensional extent in which objects and events occur and have relative position and direction.[1] Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of the boundless four-dimensional continuum known as spacetime. In mathematics one examines 'spaces' with different numbers of dimensions and with different underlying structures. The concept of space is considered to be of fundamental importance to an understanding of the physical universe although disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework.

Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, in his reflections on what the Greeks called: chora / Khora (i.e. 'space'), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e. place), or even in the later 'geometrical conception of place' as 'space qua extension' in the Discourse on Place (Qawl fi al-makan) of the 11th century Arab polymath Ibn al-Haytham (Alhazen).[2] Many of these classical philosophical questions were discussed in the Renaissance and then reformulated in the 17th century, particularly during the early development of classical mechanics. In Isaac Newton's view, space was absolute - in the sense that it existed permanently and independently of whether there were any matter in the space.[3]

Other natural philosophers, notably Gottfried Leibniz, thought instead that space was a collection of relations between objects, given by their distance and direction from one another. In the 18th century, the philosopher and theologian George Berkely attempted to refute the 'visibility of spatial depth' in his Essay Towards a New Theory of Vision. Later, the great metaphysician Immanuel Kant described space and time as elements of a systematic framework that humans use to structure their experience; he referred to 'space' in his Critique of Pure Reason as being: a subjective 'pure a priori form of intuition', hence that its existence depends on our human faculties.

In the 19th and 20th centuries mathematicians began to examine non-Euclidean geometries, in which space can be said to be curved, rather than flat. According to Albert Einstein's theory of general relativity, space around gravitational fields deviates from Euclidean space.[4] Experimental tests of general relativity have confirmed that non-Euclidean space provides a better model for the shape of space.

Contents

Philosophy of space

Leibniz and Newton

In the seventeenth century, the philosophy of space and time emerged as a central issue in epistemology and metaphysics. At its heart, Gottfried Leibniz, the German philosopher-mathematician, and Isaac Newton, the English physicist-mathematician, set out two opposing theories of what space is. Rather than being an entity that independently exists over and above other matter, Leibniz held that space is no more than the collection of spatial relations between objects in the world: "space is that which results from places taken together".[5] Unoccupied regions are those that could have objects in them, and thus spatial relations with other places. For Leibniz, then, space was an idealised abstraction from the relations between individual entities or their possible locations and therefore could not be continuous but must be discrete.[6] Space could be thought of in a similar way to the relations between family members. Although people in the family are related to one another, the relations do not exist independently of the people.[7] Leibniz argued that space could not exist independently of objects in the world because that implies a difference between two universes exactly alike except for the location of the material world in each universe. But since there would be no observational way of telling these universes apart then, according to the identity of indiscernibles, there would be no real difference between them. According to the principle of sufficient reason, any theory of space that implied that there could be these two possible universes, must therefore be wrong.[8]


Newton took space to be more than relations between material objects and based his position on observation and experimentation. For a relationist there can be no real difference between inertial motion, in which the object travels with constant velocity, and non-inertial motion, in which the velocity changes with time, since all spatial measurements are relative to other objects and their motions. But Newton argued that since non-inertial motion generates forces, it must be absolute.[9] He used the example of water in a spinning bucket to demonstrate his argument. Water in a bucket is hung from a rope and set to spin, starts with a flat surface. After a while, as the bucket continues to spin, the surface of the water becomes concave. If the bucket's spinning is stopped then the surface of the water remains concave as it continues to spin. The concave surface is therefore apparently not the result of relative motion between the bucket and the water.[10] Instead, Newton argued, it must be a result of non-inertial motion relative to space itself. For several centuries the bucket argument was decisive in showing that space must exist independently of matter.

Kant

In the eighteenth century the German philosopher Immanuel Kant developed a theory of knowledge in which knowledge about space can be both a priori and synthetic.[11] According to Kant, knowledge about space is synthetic, in that statements about space are not simply true by virtue of the meaning of the words in the statement. In his work, Kant rejected the view that space must be either a substance or relation. Instead he came to the conclusion that space and time are not discovered by humans to be objective features of the world, but are part of an unavoidable systematic framework for organizing our experiences.[12]

Non-Euclidean geometry

Spherical geometry is similar to elliptical geometry. On the surface of a sphere there are no parallel lines.
 
Euclid's Elements contained five postulates that form the basis for Euclidean geometry. One of these, the parallel postulate has been the subject of debate among mathematicians for many centuries. It states that on any plane on which there is a straight line L1 and a point P not on L1, there is only one straight line L2 on the plane that passes through the point P and is parallel to the straight line L1. Until the 19th century, few doubted the truth of the postulate; instead debate centered over whether it was necessary as an axiom, or whether it was a theory that could be derived from the other axioms.[13] Around 1830 though, the Hungarian JĂ¡nos Bolyai and the Russian Nikolai Ivanovich Lobachevsky separately published treatises on a type of geometry that does not include the parallel postulate, called hyperbolic geometry. In this geometry, an infinite number of parallel lines pass through the point P. Consequently the sum of angles in a triangle is less than 180o and the ratio of a circle's circumference to its diameter is greater than pi. In the 1850s, Bernhard Riemann developed an equivalent theory of elliptical geometry, in which no parallel lines pass through P. In this geometry, triangles have more than 180o and circles have a ratio of circumference-to-diameter that is less than pi.
Type of geometry Number of parallels Sum of angles in a triangle Ratio of circumference to diameter of circle Measure of curvature
Hyperbolic Infinite < 180o > π < 0
Euclidean 1 180o π 0
Elliptical 0 > 180o < π > 0

Gauss and Poincaré

Although there was a prevailing Kantian consensus at the time, once non-Euclidean geometries had been formalised, some began to wonder whether or not physical space is curved. Carl Friedrich Gauss, a German mathematician, was the first to consider an empirical investigation of the geometrical structure of space. He thought of making a test of the sum of the angles of an enormous stellar triangle and there are reports he actually carried out a test, on a small scale, by triangulating mountain tops in Germany.[14]

Henri Poincaré, a French mathematician and physicist of the late 19th century introduced an important insight in which he attempted to demonstrate the futility of any attempt to discover which geometry applies to space by experiment.[15] He considered the predicament that would face scientists if they were confined to the surface of an imaginary large sphere with particular properties, known as a sphere-world. In this world, the temperature is taken to vary in such a way that all objects expand and contract in similar proportions in different places on the sphere. With a suitable falloff in temperature, if the scientists try to use measuring rods to determine the sum of the angles in a triangle, they can be deceived into thinking that they inhabit a plane, rather than a spherical surface.[16] In fact, the scientists cannot in principle determine whether they inhabit a plane or sphere and, Poincaré argued, the same is true for the debate over whether real space is Euclidean or not. For him, which geometry was used to describe space, was a matter of convention.[17] Since Euclidean geometry is simpler than non-Euclidean geometry, he assumed the former would always be used to describe the 'true' geometry of the world.[18]

Einstein

In 1905, Albert Einstein published a paper on a special theory of relativity, in which he proposed that space and time be combined into a single construct known as spacetime. In this theory, the speed of light in a vacuum is the same for all observers—which has the result that two events that appear simultaneous to one particular observer will not be simultaneous to another observer if the observers are moving with respect to one another. Moreover, an observer will measure a moving clock to tick more slowly than one that is stationary with respect to them; and objects are measured to be shortened in the direction that they are moving with respect to the observer.

Over the following ten years Einstein worked on a general theory of relativity, which is a theory of how gravity interacts with spacetime. Instead of viewing gravity as a force field acting in spacetime, Einstein suggested that it modifies the geometric structure of spacetime itself.[19] According to the general theory, time goes more slowly at places with lower gravitational potentials and rays of light bend in the presence of a gravitational field. Scientists have studied the behaviour of binary pulsars, confirming the predictions of Einstein's theories and Non-Euclidean geometry is usually used to describe spacetime.

Mathematics

In modern mathematics spaces are defined as sets with some added structure. They are frequently described as different types of manifolds, which are spaces that locally approximate to Euclidean space, and where the properties are defined largely on local connectedness of points that lie on the manifold. There are however, many diverse mathematical objects that are called spaces. For example, vector spaces such as function spaces may have infinite numbers of independent dimensions and a notion of distance very different to Euclidean space, and topological spaces replace the concept of distance with a more abstract idea of nearness.

Physics

Classical mechanics

Classical mechanics
History of classical mechanics · Timeline of classical mechanics
[hide]Fundamental concepts
Space · Time · Velocity · Speed · Mass · Acceleration · Gravity · Force · Impulse · Torque / Moment / Couple · Momentum · Angular momentum · Inertia · Moment of inertia · Reference frame · Energy · Kinetic energy · Potential energy · Mechanical work · Virtual work · D'Alembert's principle
v · d · e
Space is one of the few fundamental quantities in physics, meaning that it cannot be defined via other quantities because nothing more fundamental is known at the present. On the other hand, it can be related to other fundamental quantities. Thus, similar to other fundamental quantities (like time and mass), space can be explored via measurement and experiment.

Astronomy

Astronomy is the science involved with the observation, explanation and measuring of objects in outer space.

Relativity

Before Einstein's work on relativistic physics, time and space were viewed as independent dimensions. Einstein's discoveries showed that due to relativity of motion our space and time can be mathematically combined into one object — spacetime. It turns out that distances in space or in time separately are not invariant with respect to Lorentz coordinate transformations, but distances in Minkowski space-time along space-time intervals are—which justifies the name.
In addition, time and space dimensions should not be viewed as exactly equivalent in Minkowski space-time. One can freely move in space but not in time. Thus, time and space coordinates are treated differently both in special relativity (where time is sometimes considered an imaginary coordinate) and in general relativity (where different signs are assigned to time and space components of spacetime metric).

Furthermore, in Einstein's general theory of relativity, it is postulated that space-time is geometrically distorted- curved -near to gravitationally significant masses.[20]

Experiments are ongoing to attempt to directly measure gravitational waves. This is essentially solutions to the equations of general relativity, which describe moving ripples of spacetime. Indirect evidence for this has been found in the motions of the Hulse-Taylor binary system.

Cosmology

Relativity theory leads to the cosmological question of what shape the universe is, and where space came from. It appears that space was created in the Big Bang, 13.7 billion years ago and has been expanding ever since. The overall shape of space is not known, but space is known to be expanding very rapidly due to the Cosmic Inflation.

Spatial measurement

The measurement of physical space has long been important. Although earlier societies had developed measuring systems, the International System of Units, (SI), is now the most common system of units used in the measuring of space, and is almost universally used.

Currently, the standard space interval, called a standard meter or simply meter, is defined as the distance traveled by light in a vacuum during a time interval of exactly 1/299,792,458 of a second. This definition coupled with present definition of the second is based on the special theory of relativity in which the speed of light plays the role of a fundamental constant of nature.

Geographical space

Geography is the branch of science concerned with identifying and describing the Earth, utilizing spatial awareness to try and understand why things exist in specific locations. Cartography is the mapping of spaces to allow better navigation, for visualization purposes and to act as a locational device. Geostatistics apply statistical concepts to collected spatial data to create an estimate for unobserved phenomena.

Geographical space is often considered as land, and can have a relation to ownership usage (in which space is seen as property or territory). While some cultures assert the rights of the individual in terms of ownership, other cultures will identify with a communal approach to land ownership, while still other cultures such as Australian Aboriginals, rather than asserting ownership rights to land, invert the relationship and consider that they are in fact owned by the land. Spatial planning is a method of regulating the use of space at land-level, with decisions made at regional, national and international levels. Space can also impact on human and cultural behavior, being an important factor in architecture, where it will impact on the design of buildings and structures, and on farming.

Ownership of space is not restricted to land. Ownership of airspace and of waters is decided internationally. Other forms of ownership have been recently asserted to other spaces — for example to the radio bands of the electromagnetic spectrum or to cyberspace.

Public space is a term used to define areas of land as collectively owned by the community, and managed in their name by delegated bodies; such spaces are open to all. While private property is the land culturally owned by an individual or company, for their own use and pleasure.

Abstract space is a term used in geography to refer to a hypothetical space characterized by complete homogeneity. When modeling activity or behavior, it is a conceptual tool used to limit extraneous variables such as terrain.

In psychology

Psychologists first began to study the way space is perceived in the middle of the 19th century. Those now concerned with such studies regard it as a distinct branch of psychology. Psychologists analyzing the perception of space are concerned with how recognition of an object's physical appearance or its interactions are perceived.

Other, more specialized topics studied include amodal perception and object permanence. The perception of surroundings is important due to its necessary relevance to survival, especially with regards to hunting and self preservation as well as simply one's idea of personal space.

Several space-related phobias have been identified, including agoraphobia (the fear of open spaces), astrophobia (the fear of celestial space) and claustrophobia (the fear of enclosed spaces).

See also

References

  1. ^ Britannica Online Encyclopedia: Space
  2. ^ Refer to Plato's Timaeus in the Loeb Classical Library, Harvard University, and to his reflections on: Chora / Khora. See also Aristotle's Physics, Book IV, Chapter 5, on the definition of topos. Concerning Ibn al-Haytham's 11th century conception of 'geometrical place' as 'spatial extension', which is akin to Descartes' and Leibniz's 17th century notions of extensio and analysis situs, and his own mathematical refutation of Aristotle's definition of topos in natural philosophy, refer to: Nader El-Bizri, 'In Defence of the Sovereignty of Philosophy: al-Baghdadi's Critique of Ibn al-Haytham's Geometrisation of Place', Arabic Sciences and Philosophy: A Historical Journal (Cambridge University Press), Vol.17 (2007), pp. 57-80.
  3. ^ French and Ebison, Classical Mechanics, p. 1
  4. ^ Carnap, R. An introduction to the Philosophy of Science
  5. ^ Leibniz, Fifth letter to Samuel Clarke
  6. ^ Vailati, E, Leibniz & Clarke: A Study of Their Correspondence p. 115
  7. ^ Sklar, L, Philosophy of Physics, p. 20
  8. ^ Sklar, L, Philosophy of Physics, p. 21
  9. ^ Sklar, L, Philosophy of Physics, p. 22
  10. ^ Newton's bucket
  11. ^ Carnap, R, An introduction to the philosophy of science, p. 177-178
  12. ^ Lucas, John Randolph. Space, Time and Causality. p. 149. ISBN 0198750579.
  13. ^ Carnap, R, An introduction to the philosophy of science, p. 126
  14. ^ Carnap, R, An introduction to the philosophy of science, p. 134-136
  15. ^ Jammer, M, Concepts of Space, p. 165
  16. ^ A medium with a variable index of refraction could also be used to bend the path of light and again deceive the scientists if they attempt to use light to map out their geometry
  17. ^ Carnap, R, An introduction to the philosophy of science, p. 148
  18. ^ Sklar, L, Philosophy of Physics, p. 57
  19. ^ Sklar, L, Philsosophy of Physics, p. 43
  20. ^ chapters 8 and 9- John A. Wheeler "A Journey Into Gravity and Spacetime" Scientific American ISBN 0-7167-6034-7

Thursday, March 10, 2011

NASA's Fermi Catches Thunderstorms Hurling Antimatter into Space

How thunderstorms launch particle beams into space

Scientists using NASA's Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a member of Fermi's Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH). He presented the findings Monday, during a news briefing at the American Astronomical Society meeting in Seattle.
See:NASA's Fermi Catches Thunderstorms Hurling Antimatter into Space

Thursday, February 10, 2011

New View of Family Life in the North American Nebula

This swirling landscape of stars is known as the North American nebula. In visible light, the region resembles North America, but in this new infrared view from NASA's Spitzer Space Telescope, the continent disappears. Image credit: NASA/JPL-Caltech


See: New View of Family Life in the North American Nebula


See Explanation.  Clicking on the picture will download 
 the highest resolution version available.
The North America Nebula
Credit & Copyright: Jason Ware

Explanation: Here's a familiar shape in an unfamiliar location! This emission nebula is famous partly because it resembles Earth's continent of North America. To the right of the North America Nebula, cataloged as NGC 7000, is a less luminous Pelican Nebula. The two emission nebula measure about 50 light-years across, are located about 1500 light-years away, and are separated by a dark absorption cloud. The nebulae can be seen with binoculars from a dark location. Look for a small nebular patch north-east of bright star Deneb in the constellation of Cygnus. It is still unknown which star or stars ionize the red-glowing hydrogen gas.

Monday, March 31, 2008

What is AMS?



General objectives:To collect precision cosmic ray data at high energies, including 10^10 protons; to discover or rule out certain particles as explanations for dark matter; to study cosmic ray propagation in the galaxy; to search for exotic particles or spectral features among cosmic rays
See:AMS experiment mission overview

The Alpha Magnetic Spectrometer Experiment

AMS is a particle detector for the International Space Station. A group of high-energy physicists are taking their experimental expertise - acquired in thirty years of experience at particle accelerators - into orbit. Space is full of high-energy particles of many types (collectively called "cosmic rays"), many of them originating in supernova explosions in distant galaxies. AMS detects them using a huge superconducting magnet and six highly specialized, ultra-precise detectors. It will sit on the ISS main truss - far above the obscuring atmosphere, and making full use of the ISS's irreplaceable support systems - and gather data for three years.


Long-Awaited Cosmic-Ray Detector May Be ShelvedBy DENNIS OVERBYE Published: April 3, 2007 The New York Times- Spacer and Cosmos

Beyond the experiment itself, the standoff represents a clash between two of the more strong-willed and brilliant leaders of Big Science in America: Dr. Ting of the Massachusetts Institute of Technology, who is known for his autocratic management style and obsession with detail, and Michael D. Griffin, the NASA administrator, who has shown himself willing to make tough calls in reshaping the space program away from the shuttle and toward the Moon and Mars.


Photographs by The AMS Collaboration

NASA agreed in 1995 to carry the Alpha Magnetic Spectrometer to the space station. But now the agency says its remaining shuttle flights are booked.

I have a thought to be considered here, that might spark some ideas about what happened to AMS. The question to my mind was whether this was more then political or money issue?

Think of Dennis Overbye's article of 2007, in face of the current article presented of his.

I thought along the way that this issue was resolved in regards to strangelets, and would had been "the issue" that solved allowed this to languish. But maybe there is more?

Monday, September 17, 2007

The Gravity Landscape and Lagrange Points

"We all are of the citizens of the Sky" Camille Flammarion


In 1858, by the set of its relations, it will allow Camille Flammarion, the 16 years age, to enter as raises astronomer at the Observatory of Paris under the orders of Urbain the Glassmaker, at the office of calculations.


There is a deep seated need to look beyond ourselves. We tend to look up in space, while there is this greater vision that lies even beyond what we are so used to in our everyday lives.


(Larry Niven's Ringworld, seen from space. Artwork by Harry Frank
Ringworld is a Hugo and Nebula award-winning 1970 science fiction novel by Larry Niven, set in his Known Space universe. The work is widely considered one of the classics of science fiction literature. It is followed by three sequels, and it ties in to numerous other books in the Known Space universe.
.


Our view of space and living beyond the confines of Earth, is lived over in the minds of those who have struggled within science to make these travels possible.

Imagine that first look at the blue planet. How glorious this view, while here we mere mortals look at what those take for granted as they now use the machines they created to visit new planets.

L4 and L5

The L4 and L5 points lie at 60 degrees ahead of and behind Earth in its orbit as seen from the Sun. Unlike the other Lagrange points, L4 and L5 are resistant to gravitational perturbations. Because of this stability, objects tend to accumulate in these points, such as dust and some asteroid-type objects.

A spacecraft at L1, L2, or L3 is ‘meta-stable’, like a ball sitting on top of a hill. A little push or bump and it starts moving away. A spacecraft at one of these points has to use frequent rocket firings or other means to remain in the same place. Orbits around these points are called 'halo orbits'.

But at L4 or L5, a spacecraft is truly stable, like a ball in a bowl: when gently pushed away, it orbits the Lagrange point without drifting farther and farther, and without the need of frequent rocket firings. The Sun's pull causes any object in the L4 and L5 locations to ‘orbit’ the Lagrange point in an 89-day cycle. These positions have been studied as possible sites for artificial space stations in the distant future.


I draw you attention too,"ball sitting on top of a hill" in the previous article. One should get the idea right away, that what was revealed in the possibilities of the landscape, could have correspondences in how we look at the universe in it's gravitational considerations.



Who would have known that such "orbital tendencies" which would have seem so chaotic, could have let one seen Lissajous's by design. You might think of Lorentz's butterfly flapping it's wings, yet such probabilities are held "to a spot" that is a result of placement within the very nature of the landscape of the gravitational cosmos.

So would you have wondered, "if we considered "E8" as a dimensional attribute of such probabilities "by design in such a place" what would this place look like? Would you have selecedt the probability of this resulting ball to falling in the respective valley as a, moduli form?

Wednesday, May 18, 2005

Topo-sense?



Michael Persinger has a vision - the Almighty isn't dead, he's an energy field. And your mind is an electromagnetic map to your soul.


Persinger's research forays are at the very frontier of the roiling field of neuroscience, the biochemical approach to the study of the brain. Much of what we hear about the discipline is anatomical stuff, involving the mapping of the brain's many folds and networks, aperformed by reading PET scans, observing blood flows, or deducing connections from stroke and accident victims who've suffered serious brain damage. But cognitive neuroscience is also a grab bag of more theoretical pursuits that can range from general consciousness studies to finding the neural basis for all kinds of sensations.



IN a materialistic sense I wanted to show how matter constructed phases and brain thinking, could be exemplified. Just as mathematics can, and this requirement of models of math, somehow need it's inception to arise from that same brain?

Rafael NĂºĂ±ez and George Lakoff have been able to give an elaborate first answer to the questions: How can advanced mathematics arise from the physical brain and body? Given the very limited mathematical capacity of human brains at birth, how can advanced mathematical ideas be built up using the basic mechanisms of conceptual structure: image-schemas, frames, metaphors, and conceptual blends?

Now I have done some home work here to say, that the thinking is leading from a brain orientated perspective, although this evidence is overwhelming, I have countered it with another thought.


Stanislas Dehaene
Like Lakoff, I am convinced that cognitive studies of mathematics will ultimately provide beautiful examples of the limits that our brains impose on our thoughts. As I tried to show in The Number Sense, we have very strong intuitions about small numbers and magnitudes, which are provided to us by a specific cerebral network with a long evolutionary history. But one could probably write another book describing the limits on our mathematical intuitions. Take topology, for instance. At home, I have a small collection of extremely simple topological brainteasers. Some of them (essentially made from a metal ring and a piece of string) are strikingly counter-intuitive ‹ our first reaction is that it is simply impossible to remove the ring, but of course it can be done in a few moves. Thus, our sense of topology is extremely poor. Yet it's easy enough to imagine a different species that would have evolved a cerebral area for "topo-sense", and for which all of my brain-teasers would be trivial


This intuitive feeling that is generated once math processes are understood are realized in dynamical movement revealled in the brains thinkng? Had to arrive from lessons it learnt previously? Pendulums, time clocks, great arcs, and gravity?

"What's Your Law?"




  • Damasio's First Law The body precedes the mind.


  • Damasio's Second Law Emotions precede feelings.


  • Damasio's Third Law Concepts precede words.


  • What if the condensation of the human brain was the reverse, of Damasio's First Law. I mean we can train the neuron pathways to be reconstructed, by establishing the movements previously damaged by stroke?

    What is the evolution of the human brain, if mind is not leading its shape?

    In Pioneering Study, Monkey Think, Robot DoBy SANDRA BLAKESLEE

    Monkeys that can move a robot arm with thoughts alone have brought the merger of mind and machine one step closer.

    In experiments at Duke University, implants in the monkeys' brains picked up brain signals and sent them to a robotic arm, which carried out reaching and grasping movements on a computer screen driven only by the monkeys' thoughts.

    The achievement is a significant advance in the continuing effort to devise thought-controlled machines that could be a great benefit for people who are paralyzed, or have lost control over their physical movements.

    In previous experiments, some in the same laboratory at Duke, both humans and monkeys have had their brains wired so they could move cursors on computer screens just by thinking about it. And wired monkeys have moved robot arms by making a motion with their own arms. The new research, however, involves thought-controlled robotic action that does not depend on physical movement by the monkey and that involves the complex muscular activities of reaching and grasping.


    Now the direct connection, is self evdient once the brains mapping is understood and connections made. In computerization the mathematical structure is very importan,t so such a math mind and the computer persons would excell if the equaitions would demonstrate the math as a model constructed. In this sense, if we think of the Torso, rotation turns 360 degrees, or 720, would somehow bring it back to it's original position.

    Monkey Moves Computer Cursor by Thoughts Alone, By E.J. Mundell


    Going one step further, her team then trained the monkey to simply think about a movement, without reaching out and touching the screen. A computer program, hooked up to the implanted electrodes, interpreted the monkey's thoughts by tracking flare-ups of brain cell activity. The computer then moved a cursor on the computer screen in accordance with the monkey's desires--left or right, up or down, wherever ``the electrical (brain) pattern tells us the monkey is planning to reach,'' according to Meeker.



    So I must put here some information to show the counter proposal.

    Lets say my own brain did concieve a process within it's own structure that I had been able to identify as a process of continuity and called it a inductive deductive process, according to that shape? Would this reveal something about my own brain, but of others as well? Hw el have tunnels served to help the mind engage a physiolgical process, to find it self decribing the math, in experience?

    The counter proposal I am making, is disguised in Persingers own words. That such a field manifested in the brain dynamics, as neuronic developmental pathways? Could this have been initiated from thinking structured born in mind and as a model assumption, somehow transformed the process of the whole brain?

    A Paradigm Change? Penetrating the unpenetrable?



    This plate image is a powerful one for me becuase it represents something Greene understood well. His link on the right hand side of this blog is the admission of "cosmological and quantum mechanical readiness," to tackle the cosmological frontier.

    How do you classify some experience where mind might have projected ahead of itself, while the neurons would become the basis of thinking. Something had to exist before a personality could develope. Personality is our man made, while deeper is the essence of that flows through to expression? How would you have concieved of this in a physiological processes? Einstein crossing the room, and in this, "higgs will have found it's comparison?" "Neurons," that fall in behind the projected mind?

    Brian Greene:
    it turns out that within string theory ... there is actually an identification, we believe, between the very tiny and the very huge. So it turns out that if you, for instance, take a dimension - imagine its in a circle, imagine its really huge - and then you make it smaller and smaller and smaller, the equations tell us that if you make it smaller than a certain length (its about 10-33 centimeters, the so called 'Planck Length') ... its exactly identical, from the point of view of physical properties, as making the circle larger. So you're trying to squeeze it smaller, but actually in reality your efforts are being turned around by the theory and you're actually making the dimension larger. So in some sense, if you try to squeeze it all the way down to zero size, it would be the same as making it infinitely big. ...


    So you look for the topological equivalent.The sphere and the torus? So there is this struggle of sorts. Where energy can flow through, in and out, and how had it changed, and this field becomes the image of gaussian curvature easily expressed in Maxwells delivery as part of some greater whole?

    But it is more then the relationship of that same cosmological partnership to reductionistc attempts at defining the beginning of the universe, will somehow have found it's relevance through the expression of the mind? The universe 's beginning?


    Melencolia II
    [frontispiece of thesis, after DĂ¼rer 1514]


    Historically this development of the geometry of consciousness was working hard to bring itself to light? The manifested realization, of those early universe indications.