Showing posts with label Self Evident. Show all posts
Showing posts with label Self Evident. Show all posts

Monday, April 02, 2012

Justified true belief

 Before Gettier, an historical account brings one up to date?

Euler diagram representing a definition of knowledge.
Justified true belief is one definition of knowledge that states in order to know that a given proposition is true, one must not only believe the relevant true proposition, but one must also have justification for doing so. In more formal terms, a subject S knows that a proposition P is true if, and only if:
  1. P is true
  2. S believes that P is true, and
  3. S is justified in believing that P is true
The 'justified true belief' theory of knowledge suffered a significant setback with the discovery of Gettier problems, situations in which the above conditions were met but that many philosophers disagree that anything is known.[1] Robert Nozick suggested a clarification of "justification" which he believed eliminates the problem: the justification has to be such that were the justification false, the knowledge would be false.

  See also



  • Theory of justification
  • Validity
  • Gettier problem

  •  References

    ^ Chisholm, Roderick (1982). "Knowledge as Justified True Belief". The Foundations of Knowing. Minneapolis: University of Minnesota Press. ISBN 0-8166-1103-3.

    *** 


    Knowledge is a familiarity with someone or something, which can include facts, information, descriptions, or skills acquired through experience or education. It can refer to the theoretical or practical understanding of a subject. It can be implicit (as with practical skill or expertise) or explicit (as with the theoretical understanding of a subject); and it can be more or less formal or systematic.[1] In philosophy, the study of knowledge is called epistemology, and the philosopher Plato famously defined knowledge as "justified true belief." However no single agreed upon definition of knowledge exists, and there are numerous theories to explain it. The following quote from Bertrand Russell's "Theory of Knowledge" illustrates the difficulty in defining knowledge. "The question how knowledge should be defined is perhaps the most important and difficult of the three with which we shall deal. This may seem surprising: at first sight it might be thought that knowledge might be defined as belief which is in agreement with the facts. The trouble is that no one knows what a belief is, no one knows what a fact is, and no one knows what sort of agreement between them would make a belief true. Let us begin with belief."

    Knowledge acquisition involves complex cognitive processes: perception, communication, association and reasoning; while knowledge is also said to be related to the capacity of acknowledgment in human beings.[2]

    Contents

     

     Theories of knowledge


    Robert Reid, Knowledge (1896). Thomas Jefferson Building, Washington, D.C.
    The eventual demarcation of philosophy from science was made possible by the notion that philosophy's core was "theory of knowledge," a theory distinct from the sciences because it was their foundation… Without this idea of a "theory of knowledge," it is hard to imagine what "philosophy" could have been in the age of modern science.

    Richard Rorty, Philosophy and the Mirror of Nature
    The definition of knowledge is a matter of on-going debate among philosophers in the field of epistemology. The classical definition, described but not ultimately endorsed by Plato,[3] specifies that a statement must meet three criteria in order to be considered knowledge: it must be justified, true, and believed. Some claim that these conditions are not sufficient, as Gettier case examples allegedly demonstrate. There are a number of alternatives proposed, including Robert Nozick's arguments for a requirement that knowledge 'tracks the truth' and Simon Blackburn's additional requirement that we do not want to say that those who meet any of these conditions 'through a defect, flaw, or failure' have knowledge. Richard Kirkham suggests that our definition of knowledge requires that the evidence for the belief necessitates its truth.[4]
    In contrast to this approach, Wittgenstein observed, following Moore's paradox, that one can say "He believes it, but it isn't so", but not "He knows it, but it isn't so".[5] He goes on to argue that these do not correspond to distinct mental states, but rather to distinct ways of talking about conviction. What is different here is not the mental state of the speaker, but the activity in which they are engaged. For example, on this account, to know that the kettle is boiling is not to be in a particular state of mind, but to perform a particular task with the statement that the kettle is boiling. Wittgenstein sought to bypass the difficulty of definition by looking to the way "knowledge" is used in natural languages. He saw knowledge as a case of a family resemblance. Following this idea, "knowledge" has been reconstructed as a cluster concept that points out relevant features but that is not adequately captured by any definition.[6]

     Communicating knowledge

    Symbolic representations can be used to indicate meaning and can be thought of as a dynamic process. Hence the transfer of the symbolic representation can be viewed as one ascription process whereby knowledge can be transferred. Other forms of communication include observation and imitation, verbal exchange, and audio and video recordings. Philosophers of language and semioticians construct and analyze theories of knowledge transfer or communication.[citation needed]
    While many would agree that one of the most universal and significant tools for the transfer of knowledge is writing (of many kinds), argument over the usefulness of the written word exists however, with some scholars skeptical of its impact on societies. In his collection of essays Technopoly Neil Postman demonstrates the argument against the use of writing through an excerpt from Plato's work Phaedrus (Postman, Neil (1992) Technopoly, Vintage, New York, pp 73). In this excerpt the scholar Socrates recounts the story of Thamus, the Egyptian king and Theuth the inventor of the written word. In this story, Theuth presents his new invention "writing" to King Thamus, telling Thamus that his new invention "will improve both the wisdom and memory of the Egyptians" (Postman, Neil (1992) Technopoly, Vintage, New York, pp 74). King Thamus is skeptical of this new invention and rejects it as a tool of recollection rather than retained knowledge. He argues that the written word will infect the Egyptian people with fake knowledge as they will be able to attain facts and stories from an external source and will no longer be forced to mentally retain large quantities of knowledge themselves (Postman, Neil (1992) Technopoly, Vintage, New York,pp 74).
    Andrew Robinson also highlights, in his work The Origins of Writing, the possibility for writing to be used to spread false information and therefore the ability of the written word to decrease social knowledge (Robinson, Andrew (2003) The Origins of Writing in Crowley and Heyer (eds) Communication in History: Technology, Culture, Society, Boston pp 34). People are often internalizing new information which they perceive to be knowledge but in reality fill their minds with false knowledge.
    The above points are moot in the modern world. Verbal communication lends itself to the spread of falsehoods much more so than written, as there is no record of exactly what was said or who originally said it (usually neither the source nor the content can be verified). Gossip and rumors are common examples. As to value of writing, the extent of human knowledge is now so great that it is only possible to record it and to communicate it through writing. Major libraries today can have millions of books of knowledge (in addition to works of fiction). It is only recently that audio and video technology for recording knowledge have become available and the use of these still requires replay equipment and electricity. Verbal teaching and handing down of knowledge is limited to those few who would have contact with the transmitter person - far too limited for today's world. Writing is still the most available and most universal of all forms of recording and transmitting knowledge. It stands unchallenged as mankind's primary technology of knowledge transfer down through the ages and to all cultures and languages of the world.

     Situated knowledge

    Situated knowledge is knowledge specific to a particular situation.[7]
    Some methods of generating knowledge, such as trial and error, or learning from experience, tend to create highly situational knowledge. One of the main attributes of the scientific method is that the theories it generates are much less situational than knowledge gained by other methods.[citation needed] Situational knowledge is often embedded in language, culture, or traditions.[citation needed]
    Knowledge generated through experience is called knowledge "a posteriori", meaning afterwards. The pure existence of a term like "a posteriori" means this also has a counterpart. In this case that is knowledge "a priori", meaning before. The knowledge prior to any experience means that there are certain "assumptions" that one takes for granted. For example if you are being told about a chair it is clear to you that the chair is in space, that it is 3D. This knowledge is not knowledge that one can "forget", even someone suffering from amnesia experiences the world in 3D. See also: a priori and a posteriori.[citation needed]

     Partial knowledge

    One discipline of epistemology focuses on partial knowledge. In most cases, it is not possible to understand an information domain exhaustively; our knowledge is always incomplete or partial. Most real problems have to be solved by taking advantage of a partial understanding of the problem context and problem data, unlike the typical math problems one might solve at school, where all data is given and one is given a complete understanding of formulas necessary to solve them.[citation needed]
    This idea is also present in the concept of bounded rationality which assumes that in real life situations people often have a limited amount of information and make decisions accordingly.

    Scientific knowledge

    The development of the scientific method has made a significant contribution to how knowledge is acquired. To be termed scientific, a method of inquiry must be based on gathering observable and measurable evidence subject to specific principles of reasoning and experimentation.[8] The scientific method consists of the collection of data through observation and experimentation, and the formulation and testing of hypotheses.[9] Science, and the nature of scientific knowledge have also become the subject of Philosophy. As science itself has developed, knowledge has developed a broader usage which has been developing within biology/psychology—discussed elsewhere as meta-epistemology, or genetic epistemology, and to some extent related to "theory of cognitive development".  
    Note that "epistemology" is the study of knowledge and how it is acquired. Science is “the process used everyday to logically complete thoughts through inference of facts determined by calculated experiments." Sir Francis Bacon was critical in the historical development of the scientific method; his works established and popularized an inductive methodology for scientific inquiry. His famous aphorism, "knowledge is power", is found in the Meditations Sacrae (1597).[10]
    Until recent times, at least in the Western tradition, it was simply taken for granted that knowledge was something possessed only by humans — and probably adult humans at that. Sometimes the notion might stretch to (ii) Society-as-such, as in (e.g.) "the knowledge possessed by the Coptic culture" (as opposed to its individual members), but that was not assured either. Nor was it usual to consider unconscious knowledge in any systematic way until this approach was popularized by Freud.[11]
    Other biological domains where "knowledge" might be said to reside, include: (iii) the immune system, and (iv) in the DNA of the genetic code. See the list of four "epistemological domains":   Popper, (1975);[12] and Traill (2008:[13] Table S, page 31)—also references by both to Niels Jerne.
    Such considerations seem to call for a separate definition of "knowledge" to cover the biological systems. For biologists, knowledge must be usefully available to the system, though that system need not be conscious. Thus the criteria seem to be:
    • The system should apparently be dynamic and self-organizing (unlike a mere book on its own).
    • The knowledge must constitute some sort of representation of "the outside world",[14] or ways of dealing with it (directly or indirectly).
    • Some way must exist for the system to access this information quickly enough for it to be useful.
    Scientific knowledge may not involve a claim to certainty, maintaining skepticism means that a scientist will never be absolutely certain when they are correct and when they are not. It is thus an irony of proper scientific method that one must doubt even when correct, in the hopes that this practice will lead to greater convergence on the truth in general.[15]

     Religious meaning of knowledge

    In many expressions of Christianity, such as Catholicism and Anglicanism, knowledge is one of the seven gifts of the Holy Spirit.[16]
    The Old Testament's tree of the knowledge of good and evil contained the knowledge that separated Man from God: "And the LORD God said, Behold, the man is become as one of us, to know good and evil…" (Genesis 3:22)

    In Gnosticism divine knowledge or gnosis is hoped to be attained. In Thelema knowledge and conversation with one's Holy Guardian Angel is the purpose of life.[citation needed]
    विद्या दान (Vidya Daan) i.e. knowledge sharing is a major part of Daan, a tenet of all Dharmic Religions.[17] Hindu Scriptures present two kinds of knowledge, Paroksh Gyan and Prataksh Gyan. Paroksh Gyan (also spelled Paroksha-Jnana) is secondhand knowledge: knowledge obtained from books, hearsay, etc. Prataksh Gyan (also spelled Prataksha-Jnana) is the knowledge borne of direct experience, i.e., knowledge that one discovers for oneself.[18] Jnana yoga ("path of knowledge") is one of three main types of yoga expounded by Krishna in the Bhagavad Gita. (It is compared and contrasted with Bhakti Yoga and Karma yoga.)

    In Islam, knowledge (Arabic: علم, ʿilm) is given great significance. "The Knowing" (al-ʿAlīm) is one of the 99 names reflecting distinct attributes of God. The Qur'an asserts that knowledge comes from God (2:239) and various hadith encourage the acquisition of knowledge. Muhammad is reported to have said "Seek knowledge from the cradle to the grave" and "Verily the men of knowledge are the inheritors of the prophets". Islamic scholars, theologians and jurists are often given the title alim, meaning "knowledgable".[citation needed]

    In Jewish tradition, knowledge (Hebrew: דעת da'ath) is considered one of the most valuable traits a person can acquire. Observant Jews recite three times a day in the Amidah "Favor us with knowledge, understanding and discretion that come from you. Exalted are you, Existent-One, the gracious giver of knowledge." The Tanakh states, "A wise man gains power, and a man of knowledge maintains power", and "knowledge is chosen above gold".

     See also

     References

    1. ^ http://oxforddictionaries.com/view/entry/m_en_us1261368#m_en_us1261368
    2. ^ Stanley Cavell, "Knowing and Acknowledging," Must We Mean What We Say? (Cambridge University Press, 2002), 238–266.
    3. ^ In Plato's Theaetetus, Socrates and Theaetetus discuss three definitions of knowledge: knowledge as nothing but perception, knowledge as true judgment, and, finally, knowledge as a true judgment with an account. Each of these definitions is shown to be unsatisfactory.
    4. ^ http://www.centenary.edu/attachments/philosophy/aizawa/courses/epistemologyf2008/kirkham1984.pdf
    5. ^ Ludwig Wittgenstein, On Certainty, remark 42
    6. ^ Gottschalk-Mazouz, N. (2008): „Internet and the flow of knowledge“, in: Hrachovec, H.; Pichler, A. (Hg.): Philosophy of the Information Society. Proceedings of the 30. International Ludwig Wittgenstein Symposium Kirchberg am Wechsel, Austria 2007. Volume 2, Frankfurt, Paris, Lancaster, New Brunswik: Ontos, S. 215–232. http://www.uni-stuttgart.de/philo/fileadmin/doc/pdf/gottschalk/ngm-internetflow-2008.pdf
    7. ^ Haraway, Donna 1998. Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective.
    8. ^ "[4] Rules for the study of natural philosophy", Newton 1999, pp. 794–6, from the General Scholium, which follows Book 3, The System of the World.
    9. ^ scientific method, Merriam-Webster Dictionary.
    10. ^ "Sir Francis Bacon - Quotationspage.com". Retrieved 2009-07-08.
    11. ^ There is quite a good case for this exclusive specialization used by philosophers, in that it allows for in-depth study of logic-procedures and other abstractions which are not found elsewhere. However this may lead to problems whenever the topic spills over into those excluded domains—e.g. when Kant (following Newton) dismissed Space and Time as axiomatically "transcendental" and "a priori" — a claim later disproved by Piaget's clinical studies. It also seems likely that the vexed problem of "infinite regress" can be largely (but not completely) solved by proper attention to how unconscious concepts are actually developed, both during infantile learning and as inherited "pseudo-transcendentals" inherited from the trial-and-error of previous generations. See also "Tacit knowledge".
      • Piaget, J., and B.Inhelder (1927 / 1969). The child's conception of time. Routledge & Kegan Paul: London.
      • Piaget, J., and B.Inhelder (1948 / 1956). The child's conception of space. Routledge & Kegan Paul: London.
    12. ^ Popper, K.R. (1975). "The rationality of scientific revolutions"; in Rom Harré (ed.), Problems of Scientific Revolution: Scientific Progress and Obstacles to Progress in the Sciences. Clarendon Press: Oxford.
    13. ^ http://www.ondwelle.com/OSM02.pdf
    14. ^ This "outside world" could include other subsystems within the same organism—e.g. different "mental levels" corresponding to different Piagetian stages. See Theory of cognitive development.
    15. ^ http://philosophybites.com/2007/12/barry-stroud-on.html
    16. ^ "Part Three, No. 1831". Catechism of the Catholic Church. Retrieved 2007-04-20.
    17. ^ Knowledge Donation is the primary donation
    18. ^ Swami Krishnananda. "Chapter 7". The Philosophy of the Panchadasi. The Divine Life Society. Retrieved 2008-07-05
    ***

    The Theaetetus (Greek: Θεαίτητος) is one of Plato's dialogues concerning the nature of knowledge. The framing of the dialogue begins when Euclides tells his friend Terpsion that he had written a book many years ago based on what Socrates had told him of a conversation he'd had with Theaetetus when Theaetetus was quite a young man. (Euclides also notes that he'd had to go back to Socrates to ask some more questions about the speeches due to his spotty recollection of the account.)
    Euclides is prompted to share his book when Terpsion wonders where he'd been: Euclides, who apparently can usually be found in the marketplace of Megara, was walking outside of the city and had happened upon Theaetetus being carried from Corinth to Athens with a case of dysentery and a minor war wound; Euclides remarks that Socrates had made some uncanny predictions about Theaetetus needing to rise to fame. Euclides' book is read aloud to the two men by a slave boy in the employ of Euclides.
    In this dialogue, Socrates and Theaetetus discuss three definitions of knowledge: knowledge as nothing but perception, knowledge as true judgment, and, finally, knowledge as a true judgment with an account. Each of these definitions is shown to be unsatisfactory. The conversation ends with Socrates' announcement that he has to go to court to answer to the charges that he has been corrupting the young and failing to worship Athenian Gods.

    Contents

     

     Midwife to knowledge

    Socrates asks Theodorus if he knows of any geometry students who show particular promise. Theodorus assures him that he does, but that he does not want to over-praise the boy, lest anyone suspect he is in love with him. He says that the boy, Theaetetus, is a young Socrates look-alike, rather homely, with a snub-nose and protruding eyes. The two older men spot Theaetetus rubbing himself down with oil, and Theodorus reviews the facts about him, that he is intelligent, virile, and an orphan whose inheritance has been squandered by trustees.
    Socrates tells Theaetetus that he cannot make out what knowledge is, and is looking for a simple formula for it. Theaetetus says he really has no idea how to answer the question, and Socrates tells him that he is there to help. Socrates says he has modelled his career after his midwife mother. She delivered babies and for his part, Socrates can tell when a young man is in the throes of trying to give birth to a thought.

     Philosophical labor

    Socrates thinks that this idea must be identical in meaning, if not in actual words, to Protagoras' famous maxim "Man is the measure of all things." Socrates wrestles to conflate the two ideas, and stirs in for good measure a claim about Homer being the captain of a team of Heraclitan flux theorists. Socrates dictates a complete textbook of logical fallacies to the bewildered Theaetetus. When Socrates tells the child that he (Socrates) will later be smaller without losing an inch because Theaetetus will have grown relative to him, the child complains of dizziness (155c). In an often quoted line, Socrates says with delight that "wonder (thaumazein) belongs to the philosopher". He admonishes the boy to be patient and bear with his questions, so that his hidden beliefs may be yanked out into the bright light of day.

     Examining the offspring

    When Socrates sums up what they have agreed on so far, it becomes problematic that knowledge is sense perception, for Socrates raises the question that "When the same wind blows, one of us feels cold and the other not?" As a result he introduces the idea of Heraclitean flux to act as a defense to the wind objection. Heracliteanism shows that "Nothing is in itself just one thing...Everything is in a process of coming to be". Thus as there is no fixed meaning in things, but they draw their meaning in a referential difference to other things, the wind objection can be incorporated into Theaetetus's claim that "Knowledge is sense perception". As a result they can then continue their inquiry as to the truth of this claim. It is important to note that the Heraclitean doctrine of Flux is not the same as the Protagorean doctrine. The Protagorean is radical truth relativism whereas the Heraclitean is radical reality relativism. It serves as a supporting theory to the Protagorean interpretation of Theaetetus's claim, in order that they might fully inquire as to the validity of this premise. Socrates admits that it is unfortunate that Protagoras is dead and cannot defend his idea against people such as himself. He says that the two of them are "trampling on his orphan" (164e) but the charge remains.

     Abusing the "orphan" of Protagoras

    Since Protagoras is dead, Socrates puts himself in the sophist's shoes and tries to do him the favor of defending his idea (166a-168c). Socrates continues to find more ways to misinterpret and misrepresent him - "mistreat his orphan." Putting words in the dead sophist's mouth, Socrates declares that Protagoras asserts with his maxim that all things are in motion and whatever seems to be the case, is the case for the perceiver, whether the individual or the state.

    At the end of his speech, Socrates admits to Theodorus that if Protagoras were alive to defend his idea, he would have done a far better job than Socrates has just done. Theodorus tells Socrates that he must be kidding, that he has come to the task with boyish vigor. Theodorus does not claim to be a disciple of Protagoras, but never contradicts Socrates repeated assertions that he is a friend of Protagoras. Socrates admits he has used the child's timidity to aid him in his argument against the doctrine of Protagoras (168d).
    Socrates, not at all certain that he has not misrepresented Protagoras in making each man the measure of his own wisdom, presses Theodorus on the question of whether any follower of Protagoras (himself included) would contend that nobody thinks anyone else is wrong (170c). Theodorus proves to be helpless against Socrates' confusions. He agrees that Protagoras concedes that those who disagree with him are correct (171a). In making Protagoras a complete epistemological relativist, where every person's individual perceptions are his reality and his truth, both Socrates and Theodorus paint Protagoras as maintaining an absurd position. Socrates says that if Protagoras could pop his head up through the ground as far as his neck, he would expose Socrates as a speaker of nonsense, sink out of sight, and take to his heels (171d).

     The absent-minded philosopher

    Socrates then proceeds to explain why philosophers seem clumsy and stupid to the common lot of humanity. Socrates explains that philosophers are open to mockery because they are not concerned about what interests most people: they could not care less about the scandals in their neighbor's house, the tracing of one's ancestry to Heracles, and so on. Instead their thinking wanders around contemptuously, measuring the depths of the earth and contemplating the stars above the sky. It is here that Socrates draws the classic portrait of the absent-minded intellectual who cannot make his bed or cook a meal (175e). Socrates adds a big bifurcation to this speech, saying that there are only two kinds of lives to be lived: a divinely happy one, lived by righteous philosophers or a godless, miserable one, such as most people live (176-177). Socrates admits this was a digression that threatens to drown his original project, which was to define knowledge. Theodorus, the old geometer, tells Socrates that he finds this sort of thing easier to follow than his earlier arguments.

     The men of flux

    Socrates says that the men of flux, like Homer and Heraclitus, are really hard to talk to because you can't pin them down. When you ask them a question, he says, they pluck from their quiver a little aphorism to let fly at you, and as you try to figure that one out, they wing another one at you. They leave nothing settled either in discourse, or in their own minds. Socrates adds that the opposite school of thought, that teaches of the "immovable whole" is just as hard to talk to (181a,b). Socrates says he met the father of the idea, Parmenides, when he was quite young, but does not want to get into another digression over it.

     The mind as a bird cage

    Perhaps the most delightful talk in the dialogue comes near the end, when Socrates compares the human mind to a birdcage. He says it is one thing to possess knowledge and another to have it about one, on hand, as it were (199a). Socrates says that as a man goes hunting about in his mind for knowledge of something, he might grab hold of the wrong thing. He says that mistaking eleven for twelve is like going in for a pigeon and coming up with a dove (199b). Theaetetus joins in the game, and says that to complete the picture, you need to envision pieces of ignorance flying around in there with the birds. But if this is the case, how would you be able to distinguish between the birds representing real knowledge and the ones representing false ones? Are there other birds that represent this type of knowledge? Socrates comes to the conclusion that this is absurd and therefore he discards the birdcage analogy.

     Socrates and the Jury

    After discarding the bird-cage analogy, Socrates and Theaetetus return to the definition of knowledge as 'true judgement' (200e). This, Theaetetus argues, is true because it is 'free from mistakes' (200e). However Socrates introduces an example of a jury in the law-courts, being persuaded of an opinion by a lawyer. This persuasion is not the same as knowing the truth, as all is produced is 'conviction' in judging whatever the lawyers want (201a). Although Theaetetus hopes it is possible the lawyer will be able to 'persuade' the jury of the truth (201b), Socrates is unsatisfied as if they are justly persuaded, they will have true knowledge. However, in Socrates' belief, they cannot make a correct judgement as they would not have true knowledge (201c). With this conflict, Socrates decides that true judgement and knowledge must be different things.

     Knowledge as judgement with an account

    After distinguishing between knowledge and true judgement, Theaetetus recalls being told that true judgement 'with an account (logos) equates to knowledge (201d). Things without an account are 'unknowable', while things with an account are 'knowable'.
    Socrates responds by telling of a dream, in which he overheard people talking of primary elements (201e). These primary elements can only be named, they cannot be thought of as existing or not - he gives examples of words like 'itself, or that, each, alone or this' (202a). While they can be added to other words, they by themselves are just a name. When these elements are added together, Socrates says that a 'complex' is formed (202b). The primary elements are 'unaccountable and unknowable, but perceivable' while the complexes are 'knowable and expressible' and so can be objects of 'true judgement' (202b). He concludes his dream by agreeing with Theaetetus that knowledge is 'true judgement with an account' (202c).
    However, Socrates exposes some difficulties by examining letters. He takes the first two letters of his name, S and O to wonder if the syllable 'So' is knowable while the individual letters are not (203b-d). Theaetetus finds the idea strange, so Socrates deduces that in order to know the syllable, the letters must be known first (203e). Socrates proposes that the syllable can be a 'single form' produced from the letters. With this in mind, Socrates considers whether the 'sum' and the 'whole' are the same (204a). Theaetetus initially says they are not, but changes his mind in confusion when Socrates leads him through maths and the different ways of expressing the number six (204c-205b). After agreeing this, Socrates returns to the subject of syllables and letters to conclude from Theaetetus' answers that syllables are different from letters and cannot contain letters (205b). Theaetetus admits this idea is ridiculous (205c). Socrates returns to talking about elements and complexes to propose that they are in the same class, as they have 'no parts and [are] a single form' (205d).

    Socrates sums up this reversal by remarking that if anyone tries to tell them the complex is knowable and expressable while the element is the opposite, 'we had better not listen to him' (205e). He cites the example of a musician distinguishing individual notes (conceded to be elements of music) to propose that elements are 'much more clearly known'(206b).
    Socrates proposes an account to be 'making one's thought apparent vocally by means of words and verbal expressions' (206d). However, he wonders if that is so, everyone will be able to make judgement 'with an account' as they can all (except for the deaf and dumb) vocalize and express opinions on matters (206e). Socrates examines it further by suggesting that a man who can vocalize his judgement must be able to make reference to the primary elements of the subject (207a). Giving an example of defining a wagon by its individual parts (207a), agreement is reached that an account is 'going through a thing element by element'(207d). Socrates questions Theaetetus by drawing on his learning of how to write, and the idea that if you misplace individual elements (letters) of a name, that does not mean you have knowledge of it (208a). This finishes Socrates' second definition of an account as 'the way to the whole through the elements' (208c). The third definition Socrates offers is 'being able to tell some mark by which the object you are asked about differs from all other things' (208c), giving the example that the Sun is distinct for its brightness. However, this definition of an account fails as by getting to know the differentness of an object, you have to acquire knowledge about it. Thus the answer to the initial question 'What is knowledge' would be heavily circuitous - correct judgement accompanied by 'knowledge' of the differentness, which Socrates admits is 'silly' (210a).

     Conclusion

    Socrates concludes the dialogue by announcing that all the two have produced is mere "wind-eggs" and that he must be getting on now to the courthouse to face his trial being brought against him by Meletus.

     Significant references in the dialogue

    In this dialogue, Socrates refers to Epicharmus of Kos as "the prince of Comedy" and Homer as "the prince of Tragedy", and both as "great masters of either kind of poetry".[note 1] This is significant because it is one of the very few extant references in greater antiquity (Fourth century BC) to Epicharmus and his work. Another reference is in Plato's Gorgias dialogue.

     Footnotes

    1. ^ "Summon the great masters of either kind of poetry- Epicharmus, the prince of Comedy, and Homer of Tragedy", Theaetetus, by Plato, section §152e.[1] (translation by Benjamin Jowett[2]). There is some variability in translation of the passage. Words like "king", "chief", "leader", "master" are used in the place of "prince" in different translations. The basic Greek word in Plato is "akroi" from "akros" meaning topmost or high up. In this context it means "of a degree highest of its kind" or "consummate" (cf. Liddell & Scott, A Greek-English Lexicon).[3]

     References

     Selected secondary literature

    Wednesday, December 14, 2011

    Explanation on Quantum Gravity in a Nutshell

    Although Aristotle in general had a more empirical and experimental attitude than Plato, modern science did not come into its own until Plato's Pythagorean confidence in the mathematical nature of the world returned with Kepler, Galileo, and Newton. For instance, Aristotle, relying on a theory of opposites that is now only of historical interest, rejected Plato's attempt to match the Platonic Solids with the elements -- while Plato's expectations are realized in mineralogy and crystallography, where the Platonic Solids occur naturally.Plato and Aristotle, Up and Down-Kelley L. Ross, Ph.D.



    The goal of string theory is to explain the "?" in the above diagram.


     I enjoyed the Livescribe demonstration by Clifford of  Asymptotia along with the explanation for Quantum Gravity. The two pillars for me were very emblematic with regards to "pillars of science."  This as well as the arch  is very fitting to me of what becomes self evident. If  under such an examination of the two areas Clifford is talking about,  Quantum Mechanics and General Relativity then are the attempts at unification.

     
    The Yorck Project: 10.000 Meisterwerke der Malerei. DVD-ROM, 2002. ISBN 3936122202. Distributed by DIRECTMEDIA Publishing GmbH.


    That question mark can be demonstrated above as to where in the location in Cliffords diagrams is related to the Aristotelian Arch in my view?

    See:

    Tuesday, April 12, 2011

    Entheorizing

    LEONARD SUSSKIND:
    And I fiddled with it, I monkeyed with it. I sat in my attic, I think for two months on and off. But the first thing I could see in it, it was describing some kind of particles which had internal structure which could vibrate, which could do things, which wasn't just a point particle. And I began to realize that what was being described here was a string, an elastic string, like a rubber band, or like a rubber band cut in half. And this rubber band could not only stretch and contract, but wiggle. And marvel of marvels, it exactly agreed with this formula.


    I was pretty sure at that time that I was the only one in the world who knew this.

    Thoughts cross my mind as it did with Susskind's journey into the understanding of how something like a rubber band could have helped him made sense of anything. Just as with Einstein, and how it finally came to him in the understanding of the geometry Grossmann had presented to him?

    It was Grossmann who emphasized the importance of a non-Euclidean geometry called elliptic geometry to Einstein, which was a necessary step in the development of Einstein's general theory of relativity. Abraham Pais's book on Einstein suggests that Grossman mentored Einstein in tensor theory as well.

    That intuitive leap is an important one in my view when it has been understood that all the data had been gone through, and ultimately, as if resting in some state of equilibrium( it should be understood that QGP and Lagrangian numbers provide such places in my mind), it was fortunate for an access to potential was realized by working to arrive at such a point.

    If you picture probabilistic valuation as a link between such a funnel pointing toward the tip of Pascal's triangle, then what fills that funnel(potential) and what comes out of Pascal's triangle? What s the nature of that numbered system. Choose one?

    If you can funnel such potential through a point it is more then the constraint with which others may see this proverbial struggle as to identify it as a koan, but more to realize that such potential is the very essence of accessing such a point and allowing the solution toward materialism, which was logically conducive to combing all that data.

    So the idea here is that such a heat death could have happened within any mind that the very essence of such a QGP was to realize that it provide for such "a mean" in which transference of information could take place? So how can any mind ever go there?:)

    I mean for sure, not only was I concerned about finding this place inside each of our selves and the truth seeking that goes on, but also toward understanding that this was a cosmological process about which sustenance of the universe could have ever been measured in it's "status quo?"




    The shaky game: Einstein, realism, and the quantum theory By Arthur Fine



    4 Arthur Fine (1986) characterizes such a move, this not the only instance in Einstein's thinking, as the "entheorizing" of a methodological principle in the form of a physical postulate. Fine, however, argues that determinism is, for Einstein, the entheorized version of realism.
    Stanford Encyclopedia of Philosophy Notes to Einstein's Philosophy of Science-Citation Information Don A. Howard

    It is most certainly important for myself to maintain some thread of consistency in regard to how we look at reality and how one theorizes about it. So sure... what was Einstein's Realism all about?

    So you have to follow that line of thinking?

    It still is about truth. About looking to understand it, and being able to know when you have come across it. Does it sound right to you, and does it ring at the very basis of your being when you recognize it?

    ***


    Einstein and the Development of Twentieth-Century

    Philosophy of Science
    Don Howard
    University of Notre Dame

    And in a 28 November 1944 letter to Robert Thornton he echoed those words of nearly thirty years earlier:

    I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. A knowledge of the historic and philosophical background gives that kind of independence from prejudices of his generation from which most scientists are suffering.
    This independence created by philosophical insight is—in my opinion—the mark of distinction between a mere artisan or specialist and a real seeker after truth. (Einstein to
    Thornton, 7 December 1944, EA 61-574)

    Tuesday, April 27, 2010

    Intelligent Life in the Universe?

    While Drake's equation is a good basis for systematic investigations of signals from extraterrestrial intelligences, I care little about the admittedly scarce possibility that we ever receive positive news from our SETI searches. I care more about the fact that, if we consider the whole universe instead than restricting to our small galaxy, and if we omit to require that other civilizations exist at present (whatever this means over billion-light-year distance scales), the probability becomes a certainty.Tommaso Dorigo


    I was over at Tommaso Dorigo's Blog, Quantum Diaries Survivor" reading his take on Extraterrestrials: A Dime A Dozen and the opening with Stephen Hawkings Lecture. I cut out the section of my interest as well to see what Dr. Hawking was talking about, besides reading Tommaso's take.

    Qualitatively, I have come to realize,  given the framework for consideration of such possibilities,  these equations mean an inductive/deductive self evident constraint  how are we ever to consider the possibility( You have to give yourself permission to entertain).

    I mean can we ever know the framework of that Extraterrestrial Intelligence given the parameters for our own belief structures? We do not even know what is possible "not having the framework" to properly question how this can be so?

    So what I found in Dr.Hawkings lecture was the generalities of consensus across the industry of science and no new ways in which to possibly perceive the" right questions concerning the framework for possible new intelligences" that we would perceive as Extraterrestrials.

    ***

    NASA's 50th Anniversary Lecture By Professor Stephen Hawking


    ...........DR. HAWKING: What will we find when we go into space? Is there alien life out there, or are we alone in the universe?
    We believe that life arose spontaneously on the Earth. So it must be possible for life to appear on othersuitable planets, of which there seem to be a large number in the galaxy.

    But we don't know how life first appeared. The probability of something as complicated as a DNA molecule being formed by random collisions of atoms in ocean is incredibly small. However, there might have been some simpler macro molecule which can build up the DNA or some other macro molecule capable of reproducing itself. Still, even if the probability of life appearing on a suitable planet is very small, since the universe is infinite, life would have appeared somewhere. If the probability is very low, the distance between two independent occurrences of life would be very large.

    However, there is a possibility known as panspermia that life could spread from planet to planet or from stellar system to stellar system carried on meteors. We know that Earth has been hit by meteors that came from Mars, and others may have come from further afield. We have no evidence that any meteors carried life, but it remains a possibility.

    An important feature of life spread by panspermia is that it would have the same basis which would be DNA for life in the neighborhood of the Earth.
    On the other hand, an independent occurrence of life would be extremely unlikely to be DNA based. So watch out if you meet an alien. You could be infected with a disease against which you have no resistance.

    One piece of observational evidence on the probability of life appearing is that we have fossils from 3.5 billion years ago. The Earth was formed 4.6 billion years ago and was probably too hot for about the first half billion years. So life appeared on Earth within half-a-billion years of it being possible, which is short compared to the 10-billion-year lifetime of an Earth-like planet.

    This would suggest either panspermia or that the probability of life appearing independently is reasonably high. If it was very low, one would have expected it to take most of the 10 billion years available. If it is panspermia, any life in the solar system or in nearby stellar systems will also be DNA based.

    While there may be primitive life in another region of the galaxy, there don't seem to be any advanced intelligent beings. We don't appear to have been visited by aliens. I am discounting reports of UFOs. Why would they appear only to cranks and weirdos?

    [Laughter.]

    DR. HAWKING: If there is a government conspiracy to suppress the reports and keep for itself the scientific knowledge the aliens bring, it seems to have been a singularly ineffective policy so far.

    Furthermore, despite an extensive search by the SETI project, we haven't heard any alien television quiz shows. This probably indicates that there are no alien civilizations at our stage of development within the radius of a few hundred lightyears. Issuing an insurance policy against abduction by aliens seems a pretty safe bet.

    Why haven't we heard from anyone out there? One view is expressed in this Calvin cartoon. The caption reads: "Sometimes I think that the surest sign that intelligent life exists elsewhere in the universe is that none of it has tried to contact us."
    More seriously, there could be three possible explanations of why we haven't heard from aliens. First, it may be that the probability of primitive life appearing on a suitable planet is very low.

    Second, the probability of primitive life appearing may be reasonably high, but the probability of that life developing intelligence like ours may be very low. Just because evolution led to intelligence in our case, we shouldn't assume that intelligence is an inevitable consequence of Darwinian natural selection.

    It is not clear that intelligence confers a long-term survival advantage. Bacteria and insects will survive quite happily even if our so-called intelligence leads us to destroy ourselves.

    This is the third possibility. Life appears and in some cases develops into intelligent beings, but when it reaches a stage of sending radio signals, it will also have the technology to make nuclear bombs and other weapons of mass destruction. It will, therefore, be in danger of destroying itself before long.

    Let's hope this is not the reason we have not heard from anyone. Personally, I favor the second possibility that primitive life is relatively common, but that intelligent life is very rare. Some would say it has yet to occur on Earth.

    [Laughter.]
    DR. HAWKING: Can we exist for a long time away from the Earth? Our experience with the ISS, the International Space Station, shows that it is possible for human beings to survive for many months away from Planet Earth. However, the zero gravity aboard it causes a number of undesirable physiological changes and weakening of the bones, as well as creating practical problems with liquids, et cetera.

    One would, therefore, want any long-term base for human beings to be on a planet or moon. By digging into the surface, one would get thermal insulation and protection from meteors and cosmic rays. The planet or moon could also serve as a source of the raw materials that would be needed if the extraterrestrial community was to be self-sustaining independently of Earth.


    What are the possible sites of a human colony in the solar system? The most obvious is the Moon. It is close by and relatively easy to reach. We have already landed on it and driven across it in a buggy.

    On the other hand, the Moon is small and without atmosphere or a magnetic field to deflect the solar radiation particles, like on Earth. There is no liquid water, but there may be ice in the craters at the north and south poles. A colony on the Moon could use this as a source of oxygen with power provided by nuclear energy or solar panels. The Moon could be a base for travel to the rest of the solar system.

    Mars is the obvious next target. It is half as far, again, as the Earth from the Sun and so receives half the warmth. It once had a magnetic field, but it decayed 4 billion years ago, leaving Mars without protection from solar radiation. It stripped Mars of most of its atmosphere, leaving it with only 1 percent of the pressure of the Earth's atmosphere.

    However, the pressure must have been higher in the past because we see what appear to be runoff channels and dried-up lakes. Liquid water cannot exist on Mars now.

    It would vaporize in the near-vacuum. This suggests that Mars had a warm wet period during which life might have appeared either spontaneously or through panspermia. There is no sign of life on Mars now, but if we found evidence that life had once existed, it would indicate that the probability of life developing on a suitable planet was fairly high.

    NASA has sent a large number of spacecraft to Mars, starting with Mariner 4 in 1964. It has surveyed the planet with a number of orbiters, the latest being the Mars Reconnaissance Orbiter. These orbiters have revealed deep gullies and the highest mountains in the solar system.

    NASA has also landed a number of probes on the surface of Mars, most recently the two Mars Rovers. These have sent back pictures of a dry desert landscape. However, there is a large quantity of water in the form of ice in the polar regions. A colony on Mars could use this as a source of oxygen.

    There has been volcanic activity on Mars. This would have brought minerals and metals to the surface which a colony could use.

    The Moon and Mars are the most suitable sites for space colonies in the solar system. Mercury and Venus are too hot, while Jupiter and Saturn are gas giants with no solid surface.

    The moons of Mars are very small and have no advantages over Mars itself.
    Some of the moons of Jupiter and Saturn might be possible. In particular, Titan, a moon of Saturn, is larger and more massive than other moons and has a dense atmosphere.

    The Cassini-Huygens Mission of NASA and ESA has landed a probe on Titan which has sent back pictures of the surface. However, it is very cold, being so far from the sun, and I wouldn't fancy living next to a lake of liquid methane.

    What about beyond the solar system? Our observations indicate that a significant fraction of stars have planets around them. So far, we can detect only giant planets like Jupiter and Saturn, but it is reasonable to assume that they will be accompanied by smaller Earth-like planets. Some of these will lay in the [inaudible] zone where the distance from the stars is the right range for liquid water to exist on their surface.
    There are around a thousand stars within 30 lightyears of Earth. If 1 percent of each had Earth-size planets in the [inaudible] zone, we would have 10 candidate new worlds. We can revisit it with current technology, but we should make interstellar a long-term aim. By long term, I mean over the next 200 to 500 years. The human race has existed as a separate species for about 2 million years.

    Civilization began about 10,000 years ago, and the rate of development has been steadily increasing.

    If the human race is to continue for another million years, we will have to boldly go where no one has gone before.

    ***

    This same perspective about which I have involved myself with the issues of gravity has been at the forefront of my journey with regards to understanding gravity, and what we have come to know of it on Earth, is that it is not as it is in heaven?:)

    Thoughts have this forming effect too, and in the world of Physical constants, how are such thoughts to be measured? "Particulate expressions" in such reductionist modes which lead to a inductive/deductive self evidential state of a ever forming Higg's field?? What thought has traversed the room, to arrive on the other side of the room with consensus?

    Not as if, we can defy it's hold on us, while taking plane flights to experience this sensation of dropping fast to earth and leaving ourselves suspended for a time. That it is a consensus borne in mind that such an idea is limited to the framework for which all ideas about it are limited too.

    The net result is that the meager N=2.1 becomes over 20 trillions! This means that there are presently 20 trillion civilizations around. 20 trillions. Okay, we might have dropped or added one factor of a hundred too many here or there, but the number is still enormous, no escape!

    Is that not a sobering thought ? To me, that is both awesome and saddening. As far as awe is concerned, of course there is no need to explain it. But there is sadness too: for imagine the incredible, unfathomable number of things that we will never be able to know, constrained in our tiny planet, during our insignificant lives. Masterpieces, inventions, acts of bravery, adventures. But also wars, atrocities, catastrophes. The history of the universe will never be written - but it would be quite a read, I am sure.
    Tommaso Dorigo


    So as with the idea of Intelligences in the universe, I place gravity along side of it, as in the context of formulating the right questions. In Tommaso's blog the entry is the deciphering in context of the Drake Equation yet not bound by it in belief. This does not make Tommaso irresponsible to me in shirking the basis of that determination by using the equation.

    So of course along the way in my endeavors with those who I have conversed, or left trail bytes for consideration, is the idea that the world as we see it is not always as it seems and that by consensus, the framework is establish is one which limits our views according too.

    A "synopsis of the events" can lead us too, and as has been extrapolated according to the world of science. The thoughts that are left to me have been the idea of how scientists can ever introduce new formulations outside of that structure consensus without first taking a new baby step(how so?). They have had to all come to agreement on the latest version of that consensus.

    Then there are, the Physical Constants. It is as if in relation to the formulation to a mathematical consistency as a correlative function of the Drake equation in the process of.

    This does not mean we sanction irresponsibility to the quest of discovering new worlds of thought, be it in context of Extraterrestrial Intelligences, or even about gravity and the quantum world in which it shall work.

    I still visit those scientists who have placed "Outreach" even amidst the data and scientific endeavors they are pursuing. I look for the glimmer of hope that such baby steps are borne out of such minds.

    Having defined all the parameters of your science what would be the next question that would lead you to new insights? What new science beyond the experiments that you are working on?