Showing posts with label Satellites. Show all posts
Showing posts with label Satellites. Show all posts

Saturday, August 25, 2012

Sampex

SAMPEX, the Solar Anomalous and Magnetospheric Particle Explorer, was successfully launched by a Scout rocket on July 3, 1992. It is investigating the composition of local interstellar matter and solar material and the transport of magnetospheric charged particles into the Earth's atmosphere.

SAMPEX is a momentum-biased, sun-pointed spacecraft that maintains the experiment-view axis in a zenith direction as much as possible, especially while traversing the polar regions of the Earth. It points its solar array at the Sun by aiming the momentum vector toward the Sun and rotating the spacecraft one revolution per orbit about the Sun/spacecraft axis.




The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite was launched in July 1992 into a low earth orbit at an altitude of 520 by 670 km and 82 degrees inclination. The satellite far exceeded its expected three-year lifetime. It has primarily operated in a three-axis stabilized mode but has also been spun for limited periods. The satellite carries four instruments designed to measure the radiation environment of the Earth's magnetosphere.

SAMPEX was an international collaboration between NASA of the United States and Germany.[2] It was part of the Small Explorer program started in 1989[2]
SAMPEX science mission ended on June 30, 2004.[3]


Sunday, January 24, 2010

Interplanetary Transport Network




This stylized depiction of the ITN is designed to show its (often convoluted) path through the solar system. The green ribbon represents one path from among the many that are mathematically possible along the surface of the darker green bounding tube. Locations where the ribbon changes direction abruptly represent trajectory changes at Lagrange points, while constricted areas represent locations where objects linger in temporary orbit around a point before continuing on




This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel.

Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions.

Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.


See:Interplanetary Superhighway Makes Space Travel Simpler
July 17 2002

Friday, January 18, 2008

MESSENGER Reveals Mercury’s Geological History

Stefan of Backreaction posted a blog entry called,"Mercury looks like the Moon, nearly... that brought me up to speed on what the planet actually looks like.

His article provides for the links here in this entry, as well sets the stage for the culminating vision I have of our solar system. Looking at the solar system in the processes I outline are important point of seeing the gravitational aspects of the universe as we have come to know it.

I had never considered what the actual surface of Mercury would look like, other then what I had thought it to be, when told as a child. A molten surface.

Using the laser altimeter, MESSENGER will verify the presence of a liquid outer core in Mercury by measuring the planet's libration. Libration is the slow 88-day wobble of the planet around its rotational axis.


Seeing Mercury the way it is below provides for some thought about Mercury facing toward the Sun. It's surface looking at the picture below, I was wondering if facing directly in opposition to the Sun would showing brighter spots as we look to the right of this image.

This also raised an interesting question on my mind about how the uniformity of the surface could retain it's moon like look while undergoing the passage of "increased heat" as it faced the sun at anyone time through it's rotation.

Question 4 : What is the structure of Mercury's core?


Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

More recently, Earth-based radar observations of Mercury have also determined that at least a portion of the large metal core is still liquid to this day! Having at least a partially molten core means that a very small but detectable variation in the spin-rate of Mercury has a larger amplitude because of decoupling between the solid mantle and liquid core. Knowing that the core has not completely solidified, even as Mercury has cooled over billions of years since its formation, places important constraints on the thermal history, evolution, and core composition of the planet.




Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This MESSENGER image was taken from a distance of about 18,000 kilometers (11,000 miles) from the surface of Mercury, at 20:03 UTC, about 58 minutes after the closest approach point of the flyby. The region shown is about 500 kilometers (300 miles) across, and craters as small as 1 kilometer (0.6 mile) can be seen in this image.


The Gravity Field



Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)

This is always of interest to be because it is an accumulation of the synthesis of views we gain as we come to understand not only the views of on the Window of the universe, as we look at the Sun under information obtain in the neutrino laboratory's and information modelling of how we can now look at the sun with this new view.

But the truth is, the Earth's topography is highly variable with mountains, valleys, plains, and deep ocean trenches. As a consequence of this variable topography, the density of Earth's surface varies. These fluctuations in density cause slight variations in the gravity field, which, remarkably, GRACE can detect from space.

Well, by adding the label of Grace and Grace satellite systems, it is important to me that not only is gravity considered in context of the exploration of space in terms of Lagrangian, but of viewing how we map the earth and the views we obtain of that new gravity model of earth. This application then becomes of interest as we understand how we see the gravity model of Mercury and how the geological structure of Mercury will be reflected in that gravity model.

The Culminating Vision

Fig. 1. Story line showing the principle of least action sandwiched between relativity and quantum mechanics See A call to action

See:
  • The Periodic Table of the Moon's Strata
  • Time-Variable Gravity Measurements

  • Andrew Wiles and Fermat
  • Tuesday, December 11, 2007

    The Other Side of the Coin

    Susan Holmes- Statistician Persi Diaconis' mechanical coin flipper.

    In football's inaugural kickoff coin toss, the coin is not caught but allowed to bounce on the ground. That introduces an extra complication, one mathematicians have yet to sort out.




    Persi Diaconis See here.

    The Ground State

    There is always an "inverse order to Gravity" that helps one see in ways that we are not accustom too. The methods of "prospective measurements" in science have taken a radical turn? Satellites as a measure, have focused our views.



    While one may now look at the "sun in a different way" it had to first display itself across the "neutrino Sudbury screen" before we knew to picture the sun now in the way we do. It was progressive, in the way the sun now forms a picture of what we now know in measure.

    So you try and bring it all together under this "new way of seeing" and hopefully your account of "the way reality is," is shared by others who now understand what the heck I am doing?

    To get a simple physical understanding of what the acoustic oscillations are, it may be helpful to change the perspective. Normally, the common way of presenting the phenomenon has been in terms of standing waves where the analysis is done in Fourier space. But the baryon-photon fluid really is just carrying sound waves, and the dispersion relation is even pretty linear. So let’s instead think of things in terms of traveling waves in real spacehttp://72.14.253.104/search?q=cache:xLcnPGO6BDQJ:cmb.as.arizona.edu/~eisenste/acousticpeak/spherical_acoustic.ps+Fourier+space+when+I%27m+thinking+about+sound.&hl=en&ct=clnk&cd=1&gl=ca-Steward Observatory, University of Arizona
    c 2005


    "Uncertainty" has this way of rearing it's head once we reduce our perspective to the microscopic principals(sand), yet, on the other side of the coin, how is it that only 5% of mass determination allows us to see the universe mapped in the way it has in regards to the CMB?

    There is this "entropic valuation" and with it, temperature. Some do not like the porridge "to hot or to cold," with regards to "living in a place" within the universe.

    So I'll repeat the blog comment entry here in this blog so one can gather some of what I mean.

    At 2:56 AM, December 11, 2007, Plato said...
    As a lay person with regards to the complexity of the language(sound)and universe, it is sometimes reduced to "seeing in ways that are much easier to deal with," although of course, it may not be the same for everyone?:)

    :)Something good science people "do not want to hear?"

    Good link in html.

    The launching of the sound waves is very similar to dropping a rock in a pond and seeing the circular wave come off (obviously that a gravity wave, not a compressional wave, but I’m focusing on the geometry). The difference here is that the area where the “rock” entered is still the most likely region to form galaxies; the spherical shell that it produced is only carrying 5% of the mass.

    Hopefully, this demystifies the effect: we’re seeing the imprint of spherical sound waves launched from the sites of dark matter overdensities in the early universe. But also I hope it makes it more clear as to why this effect is so robust: the propagation of sound in the baryon-photon plasma is very simple, and all we’re doing is measuring how far it got.


    "Mapping," had to begin somewhere. Whatever that may mean,one may think of Mendeleeev or Newlands.

    Generally Grouping Order increases the density of objects within a frame of reference, resulting in a more pronounced single object.


    "Sand with pebbles" on a beach? It had to arise from someplace?

    The other side of the Coin is?

    This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.


    and not to be undone.

    Mass results in an increase in the gravitational force exerted by an object. Density fluctuations on the surface of the Earth and in the underlying mantle are thus reflected invariations in the gravity field.As the twin GRACE satellites orbit the Earth together, these gravity field variations cause infinitesimal changes in the distance between the two. These changes will be measured with unprecedented accuracy by the instruments aboard GRACE leading to a more precise rendering of the gravitational field than has ever been possible to date.


    Layman pondering.


    So now that you have this "comprehensive view" I have gained on the way I am seeing the universe. You can "now see" how diverse the application of sound in analogy is. It is helping me to develop the "Colour of Gravity" as a artistic endeavour. I refrain from calling it "scientific" and be labelled a crackpot.

    A Synesthesic View on Life.

    Who knows how I can put these things together and come up with what I do. Yet, it had not gone unnoticed that such concepts could merge into one another, and come out with some tangible result as a "artistic effort." Some may be used to the paintings of Kandinsky(abstract), yet the plethora of imaging that unfolds in the conceptual framework might have been self evident, from such a chaotic mess of the layman's view here?

    Saturday, November 03, 2007

    Minature Satellites in Space

    KC-135 Flight Experiments
    The Reduced Gravity Program at NASA's Johnson Space Center provides the unique "weightless" or "zero-g" environment of space flight using a specially modified KC-135A. The KC flies parabolic arcs to produce weightless periods of 20 to 25 seconds. This capability is ideal for the development and verification of space hardware, experiments, crew training and basic research.

    Flight tests of the SPHERES testbed onboard NASA's KC-135 accomplished two objectives: (1) establish the functionality of testbed systems and subsystems and (2) perform limited formation flight experiments. Flight experiments were conducted over two separate weeks in early 2000, once in mid-February and again in late March. The time between flights was used to refine operations protocols, improve testbed systems, and develop more complicated experiments using lessons learned from the first week of flights.


    There is a always a history to such developments and to me not ever knowing of this process about the spheres, I find it very satisfying to have some "correlation of cognition."

    Synchronized Position Hold, Engage, Reorient Experimental Satellites


    The MIT Space Systems Laboratory developed the SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) laboratory environment to provide DARPA, NASA, and other researchers with a long term, replenishable, and upgradable testbed for the validation of high risk metrology, control, and autonomy technologies for use in formation flight and autnomous docking, rendezvous and reconfiguration algorithms. These technologies are critical to the operation of distributed satellite and docking missions such as Terrestrial Planet Finder and Orbital Express.



    Most would not understand the significance of this posting.

    For me it is the correlation of insight that I had in a dream sometime ago, about my future. Most would not of thought that we would be capable as human beings to have this ability, to be able to project people we will become, to a people who are working in relation to what is developing and was developed in this post.

    In my dream I am releasing a satellite, a Christmas tree design one without all the bells and lights.

    Thursday, March 08, 2007

    The Mind Field



    Lee Smolin:
    Height is proportional to the number of things the theory gets right. Since we don’t have a convincing case for the right theory yet, that is a high peak somewhere off in the distance. The existing approaches are hills of various heights that may or may not be connected, across some ridges and high valleys to the real peak. We assume the landscape is covered by fog so we can’t see where the real peak is, we can only feel around and detect slopes and local maxima.Lee Smolin
    See here for more information.

    Without giving some coordinates to the thinking in Colour of Gravity I thought it important that such talk be given a new perspective that had not been considered in the context with how hierarchically how I gave meaning to such colours.

    But the truth is, the Earth's topography is highly variable with mountains, valleys, plains, and deep ocean trenches. As a consequence of this variable topography, the density of Earth's surface varies. These fluctuations in density cause slight variations in the gravity field, which, remarkably, GRACE can detect from space.

    See here for more info on Grace.

    First I must say that having the sceptic aligned within oneself is a good thing. To maintain a questioning state to what is ever introduced. For me as I read the exchanges between "Susskind and Smolin" it was not without understanding that I might want to instigate "two other minds in the string debate" to engage them to bring forth "good information" about the model in science, for and against.

    Who would ever of thought to give correlate the differences we see on earth as topographical features to have thought "Colour of Gravity" has now been implemented along with sound?

    Do not forget "Titan's descent" and what "measure" do we have? We might want to see the surface in a way that you had not seen it before? What I have written so far in this post should open up a new concept in terms of what these measures do for us.

    This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.


    So have I lost you in regards to "subjectivity." Was the science reduced to innuendos of all kinds while showing such disrespect? It is less then the desired in exchange. So I have tried to hold this high in my values.

    But alas what happens sometimes though, is that we can start speaking past each other, while most distinctly I would prefer the conclusion drawn, where both would agree on the differences. Admit, they would be working to not only support their positions and the reasons why, but instigate others to continue to question and deal respectively with the continued debate. What is gravity?

    The immediacy of reactive perceptions would ask that any gravity be held in context of the reaction measured in calorimetric design.

    Moving to a "fifth dimensional" understanding was a necessary part of our evolution?

    If you join "electromagnetism and and gravity" what will become of your views of the world around you? I am the product of such thoughts. While scientists had been engaged qualitatively, I had become what their equations would allow them too in model design.

    So I had to carefully take you to this point to have enlisted the idea of the Mind Field. It's relation to what is hidden in the subtle ideas related to Colour of gravity. That we could have this "multiversity idea held to any scientists mind", while thinking of only the technologies? It had to also have it's subjective valuation too.

    How could you think as a scientist and not include this aspect of the thinking mind. That it had some "ascension" to it in terms of "pyramidal qualities." Colours that I might assign? Or, that the "bubble as a sphere" would reflect the scientists mind, as if it was a relation to "earth time variable measures" in the thoughts sequences of experience? You will reflect this, not only on a "verbal level" but one you had not seen before.

    Out in Right/Left Field

    If one didn't have their own "heart song" what said they couldn't "tap their way?"
    Both left and right sides are necessary for complete perception of rhythm. For example, both hemispheres need to be working to tell the difference between three-quarter and four-quarter time.

    The front part of your brain (frontal cortex), where working memories are stored, also plays a role in rhythm and melody perception.



    So it is no surpise that I would highlight the following debate between Michael Shermer and Deepak Chopra would it.:)

    Hope Springs Eternal Science, the Afterlife & the Meaning of Life-by Michael Shermer
    The ancient Hebrew word for soul is nephesh, or “life” or “vital breath”; the Greek word for soul is psyche, or “mind”; and the Roman Latin word for soul is anima, or “spirit” or “breath.” The soul is the essence that breathes life into flesh, animates us, gives us our vital spirit. Given the lack of knowledge about the natural world at the time these concepts were first formed, it is not surprising these ancient peoples reached for such ephemeral metaphors as mind, breath, and spirit. One moment a little dog is barking, prancing, and wagging its tail, and in the next moment it is a lump of inert flesh. What happened in that moment?

    In 1907 a Massachusetts physician named Duncan MacDougall tried to find out by weighing six dying patients before and after their death. He reported in the medical journal American Medicine that there was a 21-gram difference. Even though his measurements were crude and varying, and no one has been able to replicate his findings, it has nonetheless grown to urban legendary status as the weight of the soul. The implication is that the soul is a thing that can be weighed. Is it?



    Taking the Afterlife Seriously by Deepak Chopra
    If consciousness is an aspect of the field, then our brains should operate along the lines of a field. This seems to be true. For one thing, it’s impossible to explain how the brain coordinates millions of separate events simultaneously unless something like a mind field is present. Take a compass out of your pocket anywhere on earth, shake it, and a few seconds later the wobbly needle will always settle pointing north. If every person on the planet did this at exactly twelve midnight, billions of compasses would be doing the same thing simultaneously, a fact that doesn’t surprise us because we know that the Earth’s magnetic field is responsible. It would be absurd to claim that each compass decided randomly to pick north.

    Saturday, February 24, 2007

    NASA's Hubble Telescope Celebrates SN 1987A's 20th Anniversary

    A String of 'Cosmic Pearls' Surrounds an Exploding Star-NASA, ESA, P. Challis, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)
    Twenty years ago, astronomers witnessed one of the brightest stellar explosions in more than 400 years. The titanic supernova, called SN 1987A, blazed with the power of 100 million suns for several months following its discovery on Feb. 23, 1987.

    Observations of SN 1987A, made over the past 20 years by NASA's Hubble Space Telescope and many other major ground- and space-based telescopes, have significantly changed astronomers' views of how massive stars end their lives. Astronomers credit Hubble's sharp vision with yielding important clues about the massive star's demise.

    "The sharp pictures from the Hubble telescope help us ask and answer new questions about Supernova 1987A," said Robert Kirshner, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "In fact, without Hubble we wouldn't even know what to ask."

    Kirshner is the lead investigator of an international collaboration to study the doomed star. Studying supernovae like SN 1987A is important because the exploding stars create elements, such as carbon and iron, that make up new stars, galaxies, and even humans. The iron in a person's blood, for example, was manufactured in supernova explosions. SN 1987A ejected 20,000 Earth masses of radioactive iron. The core of the shredded star is now glowing because of radioactive titanium that was cooked up in the explosion.

    The star is 163,000 light-years away in the Large Magellanic Cloud. It actually blew up about 161,000 B.C., but its light arrived here in 1987.




    If you get the chance take a look over at the post "Supernova 1987A" done by Stefan of Backreaction in regards to this issue. It is nice to be able to reflect where one was when such a event took place. Maybe you remember where you were and can comment?

    About the event itself I must say it has not triggered any remembrances other then what I choose to reflect on my own life, and that's something different.

    What is of interest to be is how these events unfold and what geometrics play within the design of this unfoldment. I do speak on that in various posts.

    Kepler's Supernova

    Four hundred years ago, sky watchers, including the famous astronomer Johannes Kepler, were startled by the sudden appearance of a "new star" in the western sky, rivaling the brilliance of the nearby planets. Now, astronomers using NASA's three Great Observatories are unraveling the mysteries of the expanding remains of Kepler's supernova, the last such object seen to explode in our Milky Way galaxy.


    See here for link to this story.


    This combined image -- from NASA's Spitzer Space Telescope, Hubble Space Telescope, and e Chandra X-ray Observatory -- unveils a bubble-shaped shroud of gas and dust that is 14 light-years wide and is expanding at 4 million miles per hour (2,000 kilometers per second). Observations from each telescope highlight distinct features of the supernova remnant, a fast-moving shell of iron-rich material from the exploded star, surrounded by an expanding shock wave that is sweeping up interstellar gas and dust.


    By designing the types of satellites we wish to use to measure, we create the image of the events as beautiful pictures of unfoldment within our universe as seen above. Maybe you can see something in "the theory proposed of SN1987a pictures" that will help understand what I mean?

    When one is doing mathematical work, there are essentially two different ways of thinking about the subject: the algebraic way, and the geometric way. With the algebraic way, one is all the time writing down equations and following rules of deduction, and interpreting these equations to get more equations. With the geometric way, one is thinking in terms of pictures; pictures which one imagines in space in some way, and one just tries to get a feeling for the relationships between the quantities occurring in those pictures. Now, a good mathematician has to be a master of both ways of those ways of thinking, but even so, he will have a preference for one or the other; I don't think he can avoid it. In my own case, my own preference is especially for the geometrical way. Paul Dirac


    This universe has events at a time in space, which allows us to construct this event as as geometrical function. Some of the values seen in the microscopic world have placed an interesting role for me in how I see this relationship of what unfolds within our microperspective views, as to what is on display in our cosmos.

    The Bohr model is a primitive model of the hydrogen atom. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics, and thus may be considered to be an obsolete scientific theory. However, because of its simplicity, and its correct results for selected systems (see below for application), the Bohr model is still commonly taught to introduce students to quantum mechanics.


    While I appreciate these events in the cosmos I also needed to understand how such microperspective were motivating the geometry within that event, so it is not possible for me not to include the arrangements of the physics of reductionism and not compare it to these motivations that create these beautiful events

    Update: It's 9:20 am and I was just over at Quasar9's blog and notice this entry in relation to SN1987a as well.

    Monday, January 08, 2007

    Hubble Maps the Cosmic Web of "Clumpy" Dark Matter in 3-D


    Three-Dimensional Distribution of Dark Matter in the Universe
    This three-dimensional map offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the universe's mass. This milestone takes astronomers from inference to direct observation of dark matter's influence in the universe. Because of the finite speed of light, regions furthest away are also seen as they existed a long time ago. The map stretches halfway back in time to the beginning of the universe.

    The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. This confirms theories of how structure formed in our evolving universe, which has transitioned from a comparatively smooth distribution of matter at the time of the big bang. The dark matter filaments began to form first and provided an underlying scaffolding for the subsequent construction of stars and galaxies from ordinary matter. Without dark matter, there would have been insufficient mass in the universe for structures to collapse and galaxies to form.


    Part of this reporting is the way in which one could look at the Cosmos and see the gravitational relationships, as one might see it in relation to "Lagrangian views" in the Sun Earth Relation.


    Diagram of the Lagrange Point gravitational forces associated with the Sun-Earth system.


    Make sure you click on the image for further information. Mouseovers as your cursor is placed over images or worded links are equally important. You learn about satellites and the way they travel through these holes.

    While one can see "dark matter" in terms of it's constraints, what of "dark energy" as it makes it way through those holes? This reveals the expansionary nature in terms of dark energy being repelled, whether you like to think so or not. This explains the dark energy developing free of the dark matter constraints and explains the state of our universe.


    LSST Homepage background image. (Image credit: LSST Corporation, Bryn Feldman) Design of LSST Telescope dome and local facilities, current as of January 2007. Google Inc. has joined with nineteen other organizations to build the Large Synoptic Survey Telescope, scheduled to see first light atop Cerro Pachón in Chile in 2013.
    The Large Synoptic Survey Telescope (LSST) is a proposed ground-based 8.4-meter, 10 square-degree-field telescope that will provide digital imaging of faint astronomical objects across the entire sky, night after night. In a relentless campaign of 15 second exposures, LSST will cover the available sky every three nights, opening a movie-like window on objects that change or move on rapid timescales: exploding supernovae, potentially hazardous near-Earth asteroids, and distant Kuiper Belt Objects. The superb images from the LSST will also be used to trace billions of remote galaxies and measure the distortions in their shapes produced by lumps of Dark Matter, providing multiple tests of the mysterious Dark Energy.



    Two simulations of strong lensing by a massive cluster of galaxies. In the upper image, all the dark matter is clumped around individual cluster galaxies (orange), causing a particular distortion of the background galaxies (white and blue). In the lower image, the same amount of mass is more smoothly distributed over the cluster, causing a very different distortion pattern.


    Here in this post the example of "how one may see" is further expounded upon to show how dark matter and dark energy are in action as a 90% aspect of the cosmos, while the remaining 10% is a discrete measure of what is cosmologically matter orientated. We don't loose sight of these relationships, but are helped to further develope them in terms of this gravitational relationship.

    See:
  • Dark Matter in 3D
  • COSMOS Reveals the Cosmos
  • Friday, December 29, 2006

    Wolf-Rayet star

    While I have started off with the definition of the Wolf-Rayet star, the post ends in understanding the aspects of gravity and it's affects, as we look at what has become of these Wolf-Rayet stars in their desimination of it's constituent properties.

    Similar, "in my thinking" to the expansion of our universe?


    Artist's impression of a Wolf-Rayet star
    About 150 Wolf-Rayets are known in our own Milky Way Galaxy, about 100 are known in the Large Magellanic Cloud, while only 12 have been identified in the Small Magellanic Cloud. Wolf-Rayet stars were discovered spectroscopically in 1867 by the French astronomers Charles Wolf and Georges Rayet using visual spectrometery at Paris Observatory.


    There are some thoughts manifesting about how one may have see this energy of the Blue giant. It's as if the examples of what began with great force can loose it's momentum and dissipate very quickly(cosmic winds that blow the dust to different places)?


    Illustration of Cosmic Forces-Credit: NASA, ESA, and A. Feild (STScI)
    Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate.


    What if the Wolf-Rayet star does not produce the jets that are exemplified in the ideas which begin blackhole creation. Is this part of blackhole development somehow in it's demise, that we may see examples of the 150 Wolf-Rayets known in our own Milky Way as example of what they can become as blackholes, or not.

    Quark to quark Distance and the Metric

    If on such a grand scale how is it thoughts are held in my mind to microscopic proportions may not dominate as well within the periods of time the geometrics develop in the stars now known as Wolf-Rayet. So you use this cosmological model to exemplify micro perspective views in relation to high energy cosmological geometrics.



    Plato:
    "Lagrangian views" in relation may have been one result that comes quickly to my mind. Taking that chaldni plate and applying it to the universe today.


    While I had in the previous post talked about how Lagrangian views could dominate "two aspects of the universe," it is not without linking the idea of what begins as a strong gravitational force to hold the universe together, that over time, as the universe became dominated by the dark energy that the speeding up of inflation could have become pronounced by discovering the holes created in the distances between the planets and their moons. Between galaxies.



    I make fun above with the understanding of satellites travelling in our current universe in relation to planets and moons, as well as galaxies. To have taken this view down to WMAP proportions is just part of what I am trying to convey using very simplistic examples of how one may look at the universe, when gravity dominated the universe's expansion versus what has happened to the universe today in terms of speeding up.


    LOOP-DE-LOOP. The Genesis spacecraft's superhighway path took it to the Earth-sun gravitational-equilibrium point L1, where it made five "halo" orbits before swinging around L2 and heading home.Ross


    If the distances between galaxies have become greater, then what saids that that the ease with which the speeding up occurs is not without understanding that an equilibrium has been attained, from what was once dominate in gravity, to what becomes rapid expansion?

    This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel.

    Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions.

    Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.

    Tuesday, December 05, 2006

    Ring World

    Impact armor, a flexible form of clothing that hardens instantly into a rigid form stronger than steel when rapidly deformed (for example, by the impact of a projectile such as a bullet) - a technology which is quickly approaching reality; in fact being tested during the 2006 Winter Olympics as a product called d3o


    Lest you forget "the concept" above is written in a story form of our past?

    How is it possible for the human mind to see itself in some future?

    We must ask ourselves about the value of the conscience "in moving backwards in time?" An "image" constructed(memory), while not having this ability to "move forward?"

    Imagine that you give weight to the idea of human experience, limiting it, to the shades of darkness in our emotive responses. Yet, there is a time when happiness seems so effortless, that as we check how fast "time" has past, we wonder in amazement?

    No need here to draw up Einstein's conclusions about a "pretty girl and the hot stove" again and again, as it should have sunk in by now? You are the observer and you color your world.



    It's a brief image that I saw myself deploring the satellites in space. Yet, with it the fear of holding on to all that is the firm resolve of one's own focus. Of what is known. Of what we feel is safe? A satellite lost in space. My own fear, as I gazed into the black unknown, possibly lost forever.

    It is part of "my" conscious mind that I would produce such imagery? No, my anxieties were manipuated into a picture form. I sent the insecurites of my own awareness of mind deep into the "creativity" of the subconscious mind.

    You did not know you had such ability did you?:)

    Imagine that I stand on the edge of the Grand Canyon "which I did," and that space spread out before me, is the space of the universe? Imagine indeed, how tight my grip as I look.

    Science Fiction

    Who is it that could not be touched by the fiction of science to have speculated about how we shall live in another time and place? It comes out when you create the circumstances for the mind to wonder, "creatively."


    (Larry Niven's Ringworld, seen from space. Artwork by Harry Frank
    Ringworld is a Hugo and Nebula award-winning 1970 science fiction novel by Larry Niven, set in his Known Space universe. The work is widely considered one of the classics of science fiction literature. It is followed by three sequels, and it ties in to numerous other books in the Known Space universe.
    .


    What gives the mind it capabilities to venture forward and we find technologies in the "sports world being demonstrated" to harness the "memories of the geometrics" which will save us?



    If you understood the "lighthouse analogy" then why had you failed to realized the most "intense point" of impact/ highest energy particles delivered, arose from such geometrics involved? Hulse and Taylor? How was the binary stars revealed while the revolutions got closer?



    Lest some forget too, it is well that the mind see's the value of the "gravity probe b" in such "geometric form" that it has placed a picture(nit it's schematics?) before us, which saids and acknowledges the nature and move to the non-euclidean geometries. Understandng the "lagrangian perspective" is then is a short step away?

    Now what has transpired from the fiction of Ring World?


    d3o Mesh is a perforated textured sheet which has been specifically designed for comfort and breathability for applications requiring good flexure and medium levels of impact protection and is suitable for all applications.
    (dee-three-oh) is a specially engineered material made with intelligent molecules. They flow with you as you move but on shock lock together to absorb the impact energy.


    It is okay to thnk about "the theoretical" and push forward the circumstances that allow one to speculate and drawn the new imagery of mind to new horizons. New lives. We do this all the time when we re-assess our lives in face of the directions we would like to go?


    Plato:
    Now you must remember, as a student and a older one at that, there will always be mistakes. Being granted this reprieve for a time(writing our fiction?), while we look at the question asked, what do I think? Hmmmm.... interesting question.


    What is your story of creation? What hides underneath the story, what is it 's nature, that we may have "created the myth" and let one believe it is just a story?

    Tuesday, November 28, 2006

    Breakthrough Propulsion Physics?


    Shuttle Main Engine Test Firing-1981-A remote camera captures a close-up view of a Space Shuttle Main Engine during a test firing at the John C. Stennis Space Center in Hancock County, Mississippi.
    Spacecraft propulsion is used to change the velocity of spacecraft and artificial satellites, or in short, to provide delta-v. There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. Most spacecraft today are propelled by heating the reaction mass and allowing it to flow out the back of the vehicle. This sort of engine is called a rocket engine.


    While the topic here is about how travel is possible, it is the idea that "new physics" can some how propelled forward the mass in space to do the things of travel necessary.

    In addition, a variety of hypothetical propulsion techniques have been considered that would require entirely new principles of physics to realize. To date, such methods are highly speculative and include


    Within the definitions of the literature it is then possible to deduce what is required? So this saves me the time while speaking to the new physics, of having to explain the rudimentary understandings of how I can leaped forward. No less, the idea of the "thought experiment" that is put in front of us that we create the dialogue necessary, with or without impute, to advance one's thinking.


    Credit: NASA CD-98-76634 by Les Bossinas. Artist's depiction of a hypothetical Wormhole Induction Propelled Spacecraft, based loosely on the 1994 "warp drive" paper of Miguel Alcubierre.

    Introduction

    The term breakthrough propulsion refers to concepts like space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar travel practical.

    For a general explanation of the challenges and approaches of interstellar flight, please visit the companion website: Warp Drive: When? The Warp-When site is written for the general public and uses icons of science fiction to help convey such notions. This website, on the other hand, is intended for scientists and engineers.



    How is a Blackhole Determined?

    PLato:Remember the "closed loop process?"

    From the "blackhole horizon" what value would, "to e or not to e" speak too, if "one" was falling into the blackhole and "one" was out? Are they separated? What is our "state of the universe" then?


    A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole".



    IN the process of discovering the gravitational variances in space of "gravitational effects" how is it that a spaceship could become sensitive to the variations of that travel and slow down, if it did not have a way in which to calculate these fluctuations?

    There’s a place from which nothing escapes, not even light, where time and space literally come to end. It’s at this point, inside this fantastic riddle, that black holes exert their sway over the cosmos … and our imaginations.


    There’s a place from which nothing escapes, not even light? So I have to re-educate some people so that they understand the limtiations that have been applied to current thinking, by what is currently out there in terms of what we know about blackholes. So breaking from of those limitation on perspective is very important with what we know now. How we can determine a blackhole.

    So here to then is a wider perspective about lagrangain perspective of space that is needed in the understanding of travel in space. Implications of ways and means to determine the needed velocities of the space craft to move forward within context of determinations of gravitational influences.





    Special Lagrangian geometry in particular was seen to be related to another String Theory inspired phenomenon, "Mirror Symmetry". Strominger, Yau and Zaslow conjectured that mirror symmetry could be explained by studying moduli spaces arising from special Lagrangian geometry.
    Dr. Mark Haskins

    So while our imagination is being captured by this "gravitational concentration" in the cosmos what use to discern the nature of the "closed loop process" if we did not consider the "thought experiment" of Susskind as I have spoken to it in the last couple of posts?

    Hawking radiation owes its existence to the weirdness of the quantum world, in which pairs of virtual particles pop up out of empty space, annihilate each other and disappear. Around a black hole, virtual particles and anti-particles can be separated by the event horizon. Unable to annihilate, they become real. The properties of each pair are linked, or entangled. What happens to one affects the other, even if one is inside the black hole.


    The first order of business here is that we use methods based on the understanding of the "link of entanglement" around what is inside the blackhole as a measure? What that photon is telling us in relation to the gravitational considerations influencing the space craft? IN this way, "calibration technique" allows for variances in the determination of what we see in the perspective of the cosmos as a vital differential understanding of that pathways through space.

    IN "weak field understanding" we know the loop process is symmetric? Also, if gravity is combined to electromagnetism, what value the photon for determination if we had not understood this relation to gravitation effects in the cosmos? So this process then is understood in terms of developing the means to travel in space that was before not so easily determined(escape velocities for mass in space), but has now been shattered by moving beyond the paradigms of previous thought processes?

    This is the benefit of thinking "thought experiments" to progress any idea. Now what has been written here, is it right or wrong?

    The Propulsion System?


    AIRES Cosmic Ray Showers



    Also no where have I revealed the propulsion system need in order for the space craft to exceed the gravitational variances within the cosmos

    Gamma Ray production in particle creation?

    The Pierre Auger Observatory in Malargue, Argentina, is a multinational collaboration of physicists trying to detect powerful cosmic rays from outer space. The energy of the particles here is above 1019eV, or over a million times more powerful than the most energetic particles in any human-made accelerator. No-one knows where these rays come from.

    Such cosmic rays are very rare, hitting an area the size of a football field once every 10 000 years. This means you need an enormous 'net' to catch these mysterious ultra high energy particles. The Auger project will have, when completed, about 1600 detectors.


    Understanding the collision process within context of our own planet, and what information is received from other events within the cosmos allows us "to rebuild" what happens no less then what "LIGO operations" and it's gathering techniques, allows us from the complexity of the information to a thing of beauty?


    The H.E.S.S. telescope array represent a multi-year construction effort by an international team of more than 100 scientists and engineers


    So how shall we identify such sources if we had not considered the "light house effect?"


    Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87