Showing posts with label Euler. Show all posts
Showing posts with label Euler. Show all posts

Sunday, June 05, 2005

Genesis Spacecraft uses Tubes as Freeways


Without someview that would be consistent through out the cosmo, how would such points be of value? Did we not see this variation could exist when you travelled to another location, given higher dimensional comprehenisons? In order for this view to be scalable it had to have begun in some other way, that we could sufficely say that it was strong once and all pervasive, but now?


There are reasons for this story to be thought abou,t and here after seeing the greater challenge of gravitational consideration in terms of how we percieve Earth's relationship with the sun and moon. Now why did we not see the significance of gravitational considerations bring to us views of the cosmos before now? Consider space travel in light of these tubes?


LOOP-DE-LOOP. The Genesis spacecraft's superhighway path took it to the Earth-sun gravitational-equilibrium point L1, where it made five "halo" orbits before swinging around L2 and heading home.Ross
In the 18th century, European mathematicians Leonhard Euler and Joseph-Louis Lagrange discovered that in this rotating frame there are five gravitational sweet spots, now called Lagrange points. At these equilibrium points, the competing pulls on the third body balance each other, and the body remains motionless.




by Douglas L. Smith
A set of five of these balance points, called Lagrange or libration points, exist between every pair of massive bodies—the sun and its planets, the planets and their moons, and so on. Joseph-Louis Lagrange (1736–1813) discovered the existence of the two points now known as L4 and L5, each of which is located in the orbital plane at the third vertex of an equilateral triangle with, say, Earth at one vertex and the moon at the other. So L4 is 60° in advance of the moon, and L5 60° behind it. Ideally, a spacecraft at L4 or L5 will remain there indefinitely because when it falls off the cusp, the Coriolis effect—which makes it hard for you to walk on a moving merry-go-round—will swirl it into a long-lived orbit around that point. Comet debris and other space junk tends to collect there, and Jupiter has accumulated an impressive set of asteroids that way.

Friday, November 26, 2004

No Royal Road to Geometry?




All those who have written histories bring to this point their account of the development of this science. Not long after these men came Euclid, who brought together the Elements, systematizing many of the theorems of Eudoxus, perfecting many of those of Theatetus, and putting in irrefutable demonstrable form propositions that had been rather loosely established by his predecessors. He lived in the time of Ptolemy the First, for Archimedes, who lived after the time of the first Ptolemy, mentions Euclid. It is also reported that Ptolemy once asked Euclid if there was not a shorter road to geometry that through the Elements, and Euclid replied that there was no royal road to geometry. He was therefore later than Plato's group but earlier than Eratosthenes and Archimedes, for these two men were contemporaries, as Eratosthenes somewhere says. Euclid belonged to the persuasion of Plato and was at home in this philosophy; and this is why he thought the goal of the Elements as a whole to be the construction of the so-called Platonic figures. (Proclus, ed. Friedlein, p. 68, tr. Morrow)


It was interesting to me that I find some thread that has survived through the many centuries , that moves through the hands of individuals, to bring us to a interesting abstract world that few would recognize.



While Euclid is not known to have made any original discoveries, and the Elements is based on the work of his predecessors, it is assumed that some of the proofs are his own and that he is responsible for the excellent arrangement. Over a thousand editions of the work have been published since the first printed version of 1482. Euclid's other works include Data, On Divisions of Figures, Phaenomena, Optics, Surface Loci, Porisms, Conics, Book of Fallacies, and Elements of Music. Only the first four of these survive.

Of interest, is that some line of departure from the classical defintions, would have followed some road of developement, that I needed to understand how this progression became apparent. For now such links helped to stabilize this process and the essence of the departure form this classical defintion needed a culmination reached in Einstein's General Relativity. But long before this road was capture in it's essence, the predecessors in this projective road, develope conceptual realizations and moved from some point. To me, this is the fifth postulate. But before I draw attention there I wanted to show the index of this same projective geometry.

A theorem which is valid for a geometry in this sequence is automatically valid for the ones that follow. The theorems of projective geometry are automatically valid theorems of Euclidean geometry. We say that topological geometry is more abstract than projective geometry which is turn is more abstract than Euclidean geometry.

The move from the fifth postulate had Girolamo Saccheri, S.J. (1667 - 1733) ask the question?

What if the sum of the angles of a triangle were not equal to 180 degrees (or p radians)?" Suppose the sum of these angles was greater than or less than p. What would happen to the geometry we have come to depend on for so many things? What would happen to our buildings? to our technology? to our countries' boundaries?




The progression through these geometries leads to global perspectives that are not limited to the thread that moves through these cultures and civilizations. The evolution dictates that having reached Einstein GR that we understand that the world we meet is a dynamical one and with Reason, we come t recognize the Self Evident Truths.

At this point, having moved through the geometrical phases and recognitions, the physics of understanding have intertwined mathematical realms associated with Strings and loop and other means, in which to interpret that dynamical world called the Planck Length(Quantum Gravity).

Reichenbach on Helmholtz