Showing posts with label Einstein. Show all posts
Showing posts with label Einstein. Show all posts

Saturday, November 18, 2006

Bacon is Shakespeare?

A modern day puzzle, becomes, blogger world signatures? Taken to a, "Whole....nother....Level.



Creativity? Ways in which we allow "information" to travel through? Play the game? Allow "ingenuity" as the "poetic river that flows" to the surface on you, from everything, or, the blank slate?

What kind of person are you who reveals them self in the words chosen, or the picture highlighted? Humor, as a deeper response for those who look beyond the confines of words, and laugh? We just intuitively get it?

What use that language?

Tragedies, where allowed "the other to speak," and let loose all the mournings of words lost, are covered by our heart's responses? "Released." The soul without it's burdens, carries on. Not really.

Describes the "fictional" in face of the real, while "highlighting the injustices" performing characters, as individual/politicians saved? Another place, and time?


Francis Bacon, De Dignitate et Augmentis Scientiarum, 1623.


The knowledge of Cyphering, hath drawne on with it a knowledge relative unto it, which is the knowledge of Discyphering, or of Discreting Cyphers, though a man were utterly ignorant of the Alphabet of the Cypher, and the Capitulations of secrecy past between the Parties. Certainly it is an Art which requires great paines and a good witt and is (as the other was) consecrate to the Counsels of Princes: yet notwithstanding by diligent prevision it may be made unprofitable, though, as things are, it be of great use. For if good and faithfull Cyphers were invented & practised, many of them would delude and forestall all the Cunning of the Decypherer, which yet are very apt and easie to be read or written: but the rawnesse and unskilfulnesse of Secretaries, and Clarks in the Courts of Princes, is such, that many times the greatest matters are Committed to futile and weake Cyphers.
But it may be, that in the enumeration, and, as it were, taxation of Arts, some may thinke that we goe about to make a great Muster-rowle of Sciences, that the multiplication of them may be more admired; when their number perchance may be displayed, but their forces in so short a Treatise can hardly be tried. But for our parts wee doe faithfully pursue our purpose, and in making this Globe of Sciences, we would not omitt the lesser and remoter Ilands. Neither have we (in our opinion) touched these Arts perfunctorily, though cursorily; but with a piercing stile extracted the marrow and pith of them out of a masse of matter. The judgement hereof we referre to those who are most able to judge of these Arts. For seeing it is the fashion of many who would be thought to know much, that every where making ostentation of words and outward termes of Arts, they become a wonder to the ignorant, but a derision to those that are Masters of those Arts: we hope that our Labours shall have a contrarie successe, which is, that they may arrest the judgment of every one who is best vers'd in every particular Art; and be undervalued by the rest . As for those Arts which may seeme to bee of inferior ranke and order, if any man thinke wee attribute too much unto them; Let him looke about him and hee shall see that there bee many of speciall note and great account in their owne Countrie, who when they come to the chiefe City or feat of the Estate, are but of mean ranke and scarcely regarded: so it is no marvaile if these sleighter Arts, placed by the Principall and supreme Sciences, seeme pettie things; yet to those that have chosen to spend their labours and studies in them, they seeme great and excellent matters. And thus much of the Organ of Speech. -- Francis Bacon, The Advancement and Proficience of Learning, p 257-71, Book VI, 1640.


Sciences current work in Cryptography? A Vast difference then what is reveal in the Shakespearean language? Maybe, it is here, where I see the questions of Susskind's thought experiment about the elephant in two places?

We've learnt in the natural sciences that the key to understanding can often be found if we lift certain dividing lines in our minds. Newton showed that the apple falls to the ground according to the same laws that govern the Moon's orbit of the Earth. And with this he made the old differentiation between earthly and heavenly phenomena obsolete. Darwin showed that there is no dividing line between man and animal. And Einstein lifted the line dividing space and time. But in our heads, we still draw a dividing line between "reality" and "knowledge about reality", in other words between reality and information. And you cannot draw this line. There is no recipe, no process for distinguishing between reality and information. All this thinking and talking about reality is about information, which is why one should not make a distinction in the formulation of laws of nature. Quantum theory, correctly interpreted, is information theory.


So we find the methods to determine the beginning(Tabula Rusa) and what had always existed in a ideological discourse about which was before "form?"

Innatism is a philosophical doctrine introduced by Plato in the socratic dialogue Meno which holds that the mind is born with ideas/knowledge, and that therefore the mind is not a tabula rasa at birth. It asserts therefore that not all knowledge is obtained from experience and the senses. Innatism is the opposite of empiricism.

Plato claimed that humans are born with ideas/forms in the mind that are in a dormant state. He claimed that we have acquired these ideas prior to our birth when we existed as souls in the world of Forms. To access these, humans need to be reminded of them through proper education and experience.


So shall one then debate about what existed in the beginning of this universe, if we are presented with the thought that we are already born with knowledge and ideas? That we should start from such a blank slate? So then for you, nothing existed before? Or has something philosophically and profoundly, always existed?

This means you can never discard what you set in motion, only that what you started has consequences, and moves into the next life? So we try and do it right in this one. We accept the burden/choice for growth, and learn.

But this is a personal choice. We do not in face of "what lies in the dormant state" disregard empiricism. You see Plato and Aristotle together, don't you?

So we come to what is of value after we have learn about Cerenkov radiation and what did not exist before, now exists? Time travel? How is this possible in the scenario of LHC? Have we accepted faster then light entities in our assessment of what goes beyond the speed of light? Then I have to show how this is so?

Result of Effective Changes in the Cosmos

"There comes a time when the mind takes a higher plane of knowledge but can never prove how it got there. All great discoveries have involved such a leap. The important thing is not to stop questioning." Albert Einstein (1879- 1955)




But the presence of an event horizon implies a finite Hawking temperature and the conditions for defining the S Matrix cannot be fulfilled. This lack of an S Matrix is a formal mathematical problem not only in string theory but also in particle theories.

One recent attempt to address this problem invokes quantum geometry and a varying speed of light. This remains, as they say, an active area of research. But most experts doubt that anything so radical is required.


What processes would allow you to see "faster then light entities" being shown as examples of that "cross over point?" That's part of the fun isn't it when you realize what some experiments are actually checking for? :)



So yes of course, you might think about "Cerenkov radiation" and from this, what is happening in today's world, that allows us lay people, never having seen or understood, but may now do so?

SNO
The Sudbury Neutrino Observatory is a collaborative effort among physicists from Canada, the U.K., and the U.S. Using 1,000 tons of so-called heavy water and almost 10,000 photon detectors, they measure the flux, energy, and direction of solar neutrinos, which originate in the sun. SNO, located 6,800 feet underground in an active Ontario nickel mine, can also detect the other two types of neutrinos, muon neutrinos and tau neutrinos. In 2001, just two years after the observatory opened, physicists at SNO solved the 30-year-old mystery of the "missing solar neutrinos." They found that the answer lies not with the sun—where many physicists had suspected that solar neutrinos undergo changes—but with the journey they take from the core of the sun to the Earth.


In the previous article I mention the "cross over point in LHC" and from this, the idea was born in mind, how the universe and the effectives rates of expansion could take place?



While it is a long shot, I thought since of layman status, what could it hurt but to speculate and see what thoughts further arise from this. Like any model perspective adopted, allows new thinking to emerge, where previously, none existed for me. So one tends to try and go with the flow and see where it ends up. At least that's what I do and now, others do too?


Blackhole Production in the Cosmos


Increase, in high energy collisions taking place, allows speed up of inflation?



So here is the jest of what allowed me to say that the effective rates of exchange in the cosmos had to have the physics related to show the reasons why the effective speed up of inflation has been detected.


Adapted from Dienes et al., Nuclear Physics B
Some theorists envision the universe as multidimensional space-time embedding a membranous entity, called a brane, also of multiple dimensions. Diagram depicts familiar 3-dimensional space (time not shown) as a vertical line. At every point along line, one extra dimension curls around with a radius (r) of no more that about 10–19 meter. Perpendicular to every point of the brane extends the bulk, another extra dimension.


Also I will give the idea of "photo/graviton association" and how "graviton in a can" allows perspective about the "effective field variations" that "may be" predicted in the vacuum as it produces new physics to emerge on the other side? Quite a mouthful I know.


The graviton is the quantum force carrier of gravity. In conventional quantum field theory, graviton processes with loops do not make sense because of incurable divergencies.


The idea then here is to understand the graviton production in particle collisions here produce some interesting "phenomena" as we see faster then light entities move beyond the confines of that "graviton in a can." So you get the jest then, that even if the boundary conditions are experimentally being tested here, the production of gravitons is very high.

So what allows faster then light entities to move beyond these confines if you did not understand the connection to the "perfect fluid" and the anomalistic nature this perfect fluid has for allowing such traversing beyond the standard model?

That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.

Thursday, November 16, 2006

Three Ring Circus: Dark Energy

"Observations always involve theory."Edwin Hubble


Hopefully some day, I will be accepted as a student of this universe, and it's intrigue?



Sometimes it is necessary to understand that having come to different consclusion about the geometry of this universe that underneath the complexity of these equations a schematic drawing of reality is unfolding? I think this is where Einstein's success came from? So assume from this point a supersymmetrical view of the universe?

You can check out Wayne Hu's site for further info on computer simulation below


A simulation of large-scale structure
formation
As the Universe expands, galaxies become more and more distant from each other. For an observer, such as ourselves, it appears that all other galaxies fly away from us. The further the galaxy, the faster it appears to recede. This recession affects the light emitted by the distant galaxies, stretching the wavelengths of emitted photons due to the Doppler redshift effect. The distance between galaxies is proportionalto the measure of this effect 1+z, where z is what astronomers call redshift. The redshift can be measured for each object if its spectrum is measured.


All three geometrical positions demonstrated below each held the cosmologists to views of our universe. But we now know that Einstein may have been right. What allows us to think this way?

Sorry about the quality of artistic rendition. But you get the jest right?

Why is the universe speeding up, and what does this mean geometrically? There has to be some physics going on that would explain this? What may this be?

Current evidence shows that neutrinos do oscillate, which indicates that neutrinos do have mass. The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos. Therefore, there might be a fourth neutrino, which is currently being called a "sterile" neutrino, which interacts more weakly than the other three neutrinos.


Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."

If we look back to the measures of supernova Ia measure and find that in that time measure there were differences in the inflationary aspect of that universe, then, the universe today would have allowed us to consider the universe quite capable of changing it's speed of inflation.

While indeed we had held to inverse square law in our assumptions, what shall we do now? As you know, spending a couple of years on my own, I am learning, and yes, it shows sometimes. The "idea back then" presented by Savas Dimopoulos of Stanford University. "This gives us a totally new perspective for addressing theoretical and experimental problems," is what was understood in any theoretical development by scientists then and today?

Inverse Fourth Power Law


Savas Dimopoulos of Stanford University
Instead of the Newtonian inverse square law you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments.


Also, I wouldn't one to think that the experimental process had been defunct what we are doing with Cosmic ray collision processes, to not include it with what the LHC is doing as well. Not only have we created the conditions for it in LHC we recognize as a natural process.

While we know of the components of our universe distributed we understand that their is a part of this whole thing that is casing some questions about what we had thought held to the big bomb's inverse square law rules.

What is causing the Speed increase?

While indeed the layman here speculates, it made more sense if we can now explain what is going on. It has been a long journey in terms of comprehension development but I must say it has been rewarding.



So while indeed I show cosmos particle showers here, it is to point out something that helps to fuel the idea behind the speeding up and slowing down of the universe? Cross over production demonstrate in LHC serves also to speak to the fluctuations in "differing speeds of inflation" in our cosmos?

The "crossover" is a point in the collision process of LHC. So by creating these conditions in the LHC, we have effectively recognized where the "new physics" will emerged from. Also, it presents the opportunity for the "first time here" to address what the effects of the LHC will do for us in terms of what has been presented in terms of the dark energy announced below.



So as close as we came to discerning the mass of the neutrino, what have we now come to know? That their could be "a form" of dark matter? The "point here" was to look for the crossover that was taking place and presenting the opportunities for "new physics" to emerge.

The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos.


I have some "thought bubbles" percolating to the surface awareness of my mind(a philosopher?), so we will have to see what strange brew materializes. This is a post in developmental mode.

Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate. Investigators used Hubble to find that dark energy was already boosting the expansion rate of the universe as long as nine billion years ago. This picture of dark energy is consistent with Albert Einstein's prediction of nearly a century ago that a repulsive form of gravity emanates from empty space. Data from Hubble provides supporting evidence to help astrophysicists to understand the nature of dark energy. This will allow them to begin ruling out some competing explanations that predict that the strength of dark energy changes over time.



The title itself of this blog post is not to make fun of what is happening in cosmology right now with the new announcement today. It is about "forcing the mind" to look at "Friedman's equation" in each of the rings. Now the thought is the "whole show" is the Einstein cosmsological constant circus and entertainment, that is happening simultaneously.

Yet it is the idea of the "oscillating nature" behind the geometrical principals that is what I am speculating about.

But thanks to good professor below there is an more in depth explanation shared.



Maybe with the development of the vision, "beyond the spacetime" we had come to know and love, we have now come to a unique point in time? That we understand the greater "depth of the universe" is now open for questions about it's inherent nature?

Saturday, November 11, 2006

Gravity and Electromagnetism?

"Yet I exist in the hope that these memoirs, in some manner, I know not how, may find their way to the minds of humanity in Some Dimensionality, and may stir up a race of rebels who shall refuse to be confined to limited Dimensionality." from Flatland, by E. A. Abbott




Oskar Klein and Theodor Franz Eduard Kaluza

What a novel idea to have the methods used by the predecessors like Maxwell, to have been united from Faraday's principals? To have Maxwell's equation Gaussian in interpretation of Riemann geometry, somehow, united by the geometries of Einstein and defined as gravity?

Then, to have Gravity and Light United?

A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole."


It seems then that the very statement of "Unification," the "Theory of everything," does not seem so far fetched as we look at the implications of what comes after. What comes from the knowledge, extended.



I was starting to loose hope here in the efforts of blogging as well, and was thinking that the time had come to a end. But "these questions" help to fuel the understanding that I had gained by giving time to "what work" has been put out there by scientists?



To think scientists would close up shop to their elite view, would seem disastrous to me, because of the leading perspective of what the physics means along side of that math.

We need to know what is "experimentally going" on so that we can also judge what theoretical models are doing for us as we extend this knowledge gained.

I gave a few views in environmental sciences in terms of the cosmic relation as well as what Gr was being introduced using time clocks and such, for views of the topographical understanding of earth from a fluidness point of view.

Now join the "cloud cover" along side of particle collisions sources, and have we learn anything that we didn't know before, or has this push new light onto what we now see of earth, as it's placed in the cosmological frontier?

Sunday, October 22, 2006

The Radius of the Little Circle

Where a dictionary proceeds in a circular manner, defining a word by reference to another, the basic concepts of mathematics are infinitely closer to an indecomposable element", a kind of elementary particle" of thought with a minimal amount of ambiguity in their definition. Alain Connes


With such a statement, the "purity of thought," is speaking to a much more schematic understanding as we discuss the sociological thinking of mathematicians and the worlds they fantasize about? While deeper in reality the thought process(meditative) was engaged at a very subtle level, associated with the energy all pervasive.




Lee Smolin :
Another wonderful spin-off is that it turns out that the charge of the electron is related to the radius of the little circle. This should not be surprizing: If the electric field is just a manifestation of geometry, the electric charge should be, too.
THE TROUBLE WITH PHYSICS-Published by Houghton-Mifflin, Sep. 2006/Penguin (UK), Feb. 2007, Page 46


In "Star Shine," we start from a very large circle, but there is much to see from this circle, when we consider it's radius. We think "continuity" is somehow not involved, if we freeze this circle, and call it a discrete measure of the universe's age? Yet we know to well that the motivation of this universe from a "distant point" measure today entropically lives in the multitude of complexities?

Plato:
Model apprehension is part of the convergence that Lee Smolin and Brian Greene talk about, and without it, how could we look at nature and never consider that Einstein's world is a much more dynamical one then we had first learned from the lessons GR supplied, about gravity in our world?


On page 47 of the Trouble with Physics Lee goes on to say further down the page:

Lee Smolin:
Unfortunately, Einstein and the other enthusiasts were wrong. As with Nordstrom's theory, the idea of unification by adding a hidden dimension failed. It is important to understand why.


If all one had was the "cosmological view" one could be very happy about the way in which his observations have been deduced from the measures of our mechanical means, that we say that GR is very well suited.

Yet it has been through th efforts of reductionism that we have said, "hey there is indeed more depth to the views we have, that the mechanical measures are being tuned accordingly?"



Juan Maldacena:
The strings move in a five-dimensional curved space-time with a boundary. The boundary corresponds to the usual four dimensions, and the fifth dimension describes the motion away from this boundary into the interior of the curved space-time. In this five-dimensional space-time, there is a strong gravitational field pulling objects away from the boundary, and as a result time flows more slowly far away from the boundary than close to it. This also implies that an object that has a fixed proper size in the interior can appear to have a different size when viewed from the boundary (Fig. 1). Strings existing in the five-dimensional space-time can even look point-like when they are close to the boundary. Polchinski and Strassler1 show that when an energetic four-dimensional particle (such as an electron) is scattered from these strings (describing protons), the main contribution comes from a string that is close to the boundary and it is therefore seen as a point-like object. So a string-like interpretation of a proton is not at odds with the observation that there are point-like objects inside it.


While energy is being exemplified according to the nature of the particles we see in calorimetric design, what said that the energy here is not topologically smooth in it's orientations? Even we we move our views to the quantum regime.

Maybe having solved the "Continuum Hypothesis," we learned much about Einstein's inclinations?

The surface of a marble table is spread out in front of me. I can get from any one point on this table to any other point by passing continuously from one point to a "neighboring" one, and repeating this process a (large) number of times, or, in other words, by going from point to point without executing "jumps." I am sure the reader will appreciate with sufficient clearness what I mean here by "neighbouring" and by "jumps" (if he is not too pedantic). We express this property of the surface by describing the latter as a continuum.Albert Einstein p. 83 of his Relativity: The Special and the General Theory



Even Einstein had to add the "extra dimension" so we understood what non-euclidean views meant in a geometrical sense. I again refer here to Klein's Ordering of Geometries so one understands the schematics and evolution of that geometry.

Saturday, October 21, 2006

The History of "Star Shine to Now"

In "The String Saga of Star Shine" I gave a distant measure of how we might seen any event from that time to now.

But before I begin I wanted to link Lubos's mention of article from David G to him, to point out the method and determinacy with which I gave the "String Saga Star Shine" it's inital point of measure "from" to our currrent infomration present in this universe now.

The Universe on a String By BRIAN GREENE

This striking pattern of convergence, linking concepts once thought unrelated, inspired Einstein to dream of the next and possibly final move: merging gravity and electromagnetism into a single, overarching theory of nature's forces.

In hindsight, there was almost no way he could have succeeded. He was barely aware that there were two other forces he was neglecting — the strong and weak forces acting within atomic nuclei. Furthermore, he willfully ignored quantum mechanics, the new theory of the microworld that was receiving voluminous experimental support, but whose probabilistic framework struck him as deeply misguided. Einstein stayed the course, but by his final years he had drifted to the fringe of a subject he had once dominated.


Low and behold we measure the "high energy in our sun" but least we remember the lower ends of the spectrum how shall we ascertain the images of the Sun if we did not include the lower measures in what we discern of the "sterile neutrino?"

Lest we forget about the "idea of convergence here" we might again refer to Lee Smolin's Book, The Trouble with Physics." Might Brian Greene be referring to the "latest debate?"

The relationship here being expounded upon, holds this principal that Lee Smolin talks about in what a new theory can do. Pastes it in our heads as I have shown the historical value of what began with "Pauli's Ghost particle" as the "now" of today, askes us to consider the value of the "sterile Neutrino" as a value in the discernation of that weak gravitational field?

Arrow of Time?

Let's look at Kip Thornes definition of the "timeline(star shine's) history" shall we?


Dr. Kip Thorne, Caltech 01-Relativity-The First 20th Century Revolution


So here we are, fully appreciating and understanding the "measure of distance" as we look at the "new image" of the sun?



Yes, we are to include now not only the valuation of high energy dissertations here but what value we have of the immediate presence of the neutrinos from the sun. We now have a much more comprehensive view of what the sun saids to us over "this distance of time?" How we may look at the image as we look at the way the sun looks in that picture shown by JoAnne of Cosmic Variance above.

A lot of people do not understand that if you look to the cosmo, you do not just look at what is evident from observation, but that your observation is increased, as you enhance your perceptions about the "real depth" of that universe.


So the lesson here, is that the mathematics "first born to mind" is a very suttle thing, as we peer deeper into the very beginning of this universe. While Einstein did not see in the way we do now, the relevance of that distance in time, is still held to every mind to consider in GR, that the depth of perception s still needed on a quantum level.

While the point made here is "gravitational in nature," the issuance is from the "other dimensions" to now. Quantum dynamcically this has been revealled while the discrete notion has been applied to our thinking as the "oscillation factor" has been understood in the muon to electron neutrino?

So should I point to the nature spread out before us, as you look at the effect of the neutrinos on the Kamiokande screen? Other ways, that I have shown, as we look at the aurora borealis, or the rainbow in our skies?



The effect of "our reason" for such processes in physics are extremely versatile on a sociological level, that one might question indeed where such "pure thoughts in mathematics" could arise to the "symbolistic nature predating( monte carlo methods of computerization)" of that physics?

Model apprehension is part of the convergence that Lee Smolin and Brian Greene talk about, and without it, how could we look at nature and never consider that Einstein's world is a much more dyamical one then we had first learnt from the lessons GR supplied about gravity in our world?

Yes GR is still a theory, but with experimental consequences, much as the model string theory offers you, as we look at the oscillatory nature of what asymmetry provides for us, from that pure "high energy state?" Gravity, very strong, to what is weak in the measures of the neutrino characters?

I gave some pictures to consider while I continue. Some may move ahead of me if they like:) Maybe Stefan and Bee of Backreaction?

Saturday, October 14, 2006

"Lead by Physics," Faces the "Trouble With Physics"


The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars



Well I have to deal with first things first here. This article above correlates the one given by Stefan. This is not to contest what you are saying, just to show you the informtaion I myself had gone through to arrive at the conclusions I do.

Ion-Smashing Yields New Knowledge, But Some Still Question Risk
By Carolyn Weaver

Seen from above, the Relativistic Heavy Ion Collider, or RHIC, at New York’s Brookhaven National Laboratory, looks like a racetrack. And it is a kind of race track: two “beam pipes” in a tunnel nearly four kilometers around, in which gold nuclei are accelerated to close to the speed of light, and are crashed into each other at intersecting points along the way. Out of the kinetic energy of those collisions, new matter is created for a brief instant: a shower of quarks and gluons, the smallest particles known – and at seven trillion degrees, hotter than anything now in the universe.



Brookhaven physicist Peter Steinberg
“It’s basically a living embodiment of E=mc squared,” says Brookhaven physicist Peter Steinberg. “Einstein’s theory told us a hundred years ago that you can trade off energy for mass, and vice versa. We’re essentially converting the kinetic energy, the energy from the motion of these nuclei, converting it into lots of particles.”

The four detectors that bestride the collision points are massive machines, with “time projection chambers” that record the collisions and their after-moments. The latest results made big news last year when Brookhaven physicists reported that the quark-gluon plasma was not a gas as expected, but rather a very dense liquid.


You say strangelets do not exist? And that no connection has been found between string theory, and strangelets. I have to then argue my case so you see it in light of what the reductionistic physics is actually doing, while string theory and it's energy values hover overhead of all these interactions. How th epaticle inclination must also include microstate blackhole creation.

So bear with me if you can.


Hi Plato,

strange matter and strangelets are a very interesting topic, but, unfortunately, there has been no experimental evidence for them so far. They are not really connected to string theory either, besides the fact that it was an early paper of Witten that resuscitated interest in them with nuclear physicists, I think.

Strangelets have been thought of as possible culprits for RHIC disaster scenarios (besides the ubiquitous black holes ;-), and as responsible for potential cosmic ray particles beyond the GZK cutoff.

But as far as I know, there has been no experimental verification of any of these ideas (and the world still exists: RHIC has produced no greedy strangelets which would have eaten up the Earth).

In the case of the potential quark star you cite, RX J185635-375, again, and unfortunately, as far as I remember, it came out that the radius determination was not completely safe. Bottomline was that this star could be well understood as a common neutron star. I am not completely sure, though, about the current status of this object, whether it is thought to be a quark star or not.

Anyway, it is a good example for an exciting observation which is reported in the press, but which has to be partially revisd later - only that these revisions don't make in the press releases. I guess it would often be quite interesting to have a kind of follow-up reporting, where one could read what is, eventually, the fate of some discovery that has been announced in the press.

The strange particles I was talking about are not strangelets, but the common hadrons with strangeness, especially the Ξs and the Ωs, with two and three strange quarks, respectively. These are the particles that I had mentioned in my earlier post, and whereof I should finish the second part, finally ;-). You typically find much more of these particles in nucleus-nucleus collisions than in (properly scaled) nucleon-nucleus collisions, which is a strong indication for an intermediate QGP state, where stange-antistrang quark pairs can easily be produced.

Best, stefan



One, as we know can make wide sweeping generalization about the physics and why is it that any position taken by any scientist would not have been one that becomes the point of departure for all scientists? An example her ei the rationship to the Heavy Ion collsions an dstringtheory and by this very nature to the strangelets as postulated.

This article below is to correlate with the article you showed me of 2004, while I had made this ocnlusion myself early in 2006, lets not forget the number of people involved in the "ghost particle, and Pauli" through out the years and what we have seen theoretically of the strangelets as they had been related to the disaster scenario as consequential microstate blackholes created in the RHIC and LHC.

Is this too drastic a scenario to have you think about what all these “particles in press” are saying about the science, that any one scientist themselves might be following to correct? You say, "just get it right?" Well there are many within the blogs who are writers for those articles? Why do you think they are amongst you?

I had noticed the grouping and conversations between blogs that had been developing over the last year and half. I continue to see some of the same people. Some, that constantly referred to the reporting that goes on. So I had to address this or forever be banished to the realm of reporting as someone just profiled.

Strangelet Search at RHIC by STAR Collaboration

Three models of strangelet production in high-energy heavy-ion collisions have been proposed in the 1980s and 1990s: coalescence [10], thermal statistical production [11], and distillation from a Quark Gluon Plasma (QGP) [12, 13]. The first two models usually predict low strangelet production cross sections at mid-rapidity, as verified by measurements of the related processes of coalescence of nucleons into nuclei [14]. If a QGP is created in heavy ion collisions, it could cool down by distillation (kaon emission) and condense to strange-quark-rich matter in its ground state – a strangelet. However, this requires a net baryon excess and a non-explosive process in the collisions [12, 15]. Neither of these conditions is
favored at mid-rapidity in ultra-high energy heavy ion collisions, as suggested by results from the Relativistic Heavy Ion Collider (RHIC) at BNL [16]. Recently a new mechanism for strangelet


I want you to have a good look at the number of names listed in this Pdf file as well the universities involve.

Clifford of Asymptotia made this point clear about the vast network of scientists even within the string theory network of people and about who knows whom? Can you possibly know everyone, or, like the paper whose citations are referred to more as we refer to any particular scientist? We then come to see the make up and nature as we hold our views to the particular few.

So before I begin here I wanted to make it clear, that having spent considerable time as hobby and interest about science. It is not without my own motivations that the interest would be the memory of one’s childhood, or the magazine that we looked at, but the reality we are dealing with and what we call the “nature of things.”

An anomaly that cannot be explained nor shall it be removed because of the lack of evidence. It’s just one of those things that you cannot change in the person’s make up who has seen the world in a different way then normal. So shall he endeavor to accumulate all the things that are wrong to destabilization the view of truth of the world just so he can corrupt all those around him?

I ask myself the question about "what is natural" because I seen what scientists were doing to each other about the theoretical/concepts/ideas models that they were adopting in their research, that I wanted to make sure that what I had been researching had been as up to date.

Would one "leave out information that I had assembled" as they deal with me?

As I have said before while the students have been engaged in the classroom I had been following the physics development as best I could. Spent years watching and learning

So here's the thing.

If I did not answer Stefan at Backreaction about the information about strangelets then it might have been left off where Stefan decided too as he continues to show his elementary particle thinking( finish the second part Stefan).

Continued reference to strangelets might everyone think the conclusion as written I the way Stefan has shown it? Would information I had been developing have been less than the standard of what scientists hold as standard. How could anyone know it all? Hold the badge over the trial of LHC or RHIC and say I had broken the law with my insolence and corruptible behavior?:) Non! Qui?

So here again is the conundrum I had placed in front of me as I looked and interacted with the various blogs who have commented on Lee Smolin’s book, “The trouble With Physics.”

But first let me then deal with Stefan at Backreaction.

Lubos Motl:
Well, I think that even if someone believes that theoretical physics can't be trusted - and many people clearly do - there exists a less scientific argument why the accelerator won't lead to such a catastrophe: the Earth is bombed by a lot of very high-energy cosmic rays and the center-of-mass energy of the collisions is comparable to the LHC energies. So far, these collisions haven't destroyed the Earth, so it is reasonable that some additional collisions we create won't be able to do so either.


While I had these similar thoughts it was not wothpt some basis the Blogett would have pointe dyou to think about strnagelets and then in my own assumptions, the comic particle collsions from what Ellis had taught us to think about. Yes, it was the natural collider in space for sure, and it's "energy values" well beyond what is availiable at LHC.

So yes "Microstate creation of blackholes in space"

In strangelets do not exist, I had come to the same conclusion Stefan did about what is "theoretically challenged" might have engaged the thinking mind as to the relationship to what the neutrino may have been in that exercise of the QGP, compared to this one on strangelets.

So I gathered information to help me see the direction the physics was going. Least it escaped the mantra that I had been hearing exemplified in my dealings as best I can.

“Lead by the Physics.” Now I face, "the trouble with Physics."

See:

  • Strangelets Do Not Exist?
  • The Fate of our Planet?
  • Are Strangelets Natural?-Saturday, September 30, 2006
  • Thursday, October 12, 2006

    George Gabriel Stokes

    Sir George Gabriel Stokes, 1st Baronet (13 August 1819–1 February 1903) was an Irish mathematician and physicist, who at Cambridge made important contributions to fluid dynamics (including the Navier-Stokes equations), optics, and mathematical physics (including Stokes' theorem). He was secretary, then president of the Royal Society.

    I mean this discourse on the nature of viscosity is leading in the sense that what has been currently going in terms of RHIC "is the physics" and understanding that came about by the pursuate of elementary considerations.

    Physicists Andrew Strominger and Cumrin Vafa, showed that this exact entropy formula can be derived microscopically (including the factor of 1/4) by counting the degeneracy of quantum states of configurations of strings and D-branes which correspond to black holes in string theory. This is compelling evidence that D-branes can provide a short distance weak coupling description of certain black holes! For example, the class of black holes studied by Strominger and Vafa are described by 5-branes, 1-branes and open strings traveling down the 1-brane all wrapped on a 5-dimensional torus, which gives an effective one dimensional object -- a black hole.


    This is part of the understanding that with those who try to diminish the substance of this avenue of research have missed in their wide sweeping generalizations, less then adequate of string theory. You do not dismiss Strominger lightly as part of that generalization.



    So in regard to multiplicities, should we dismiss the substance of the viscosity nature here while those who are less then kind about the avenue of research regarding the model string theory, find that people like Lee Smolin have decided to work with people like Clifford to deal with these physic's issues. Although he is not changing his tune in regards to the substance of this theoretical/concept/idea model, he does appreciate the science behind it.

    For those who up hold the laws, and I mean the badge of the peace officer here at Backreaction. It is nice that we understand this history as it is being explained. Shall we succumb to the mechanical modes of being and we disavow "creativity" according to the limits of the law, or must we push ahead in the "greater courts" of theoretics and challenges to these laws.

    Again I am reminded of Einstein's quote here.

    ...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.Albert Einstein


    Some would have you believe that you have acted irresponsibly in regards to model apprehsnsion about nature? Don't let them fool you or coierce you into thinking that you have disvorced yoruself from reality. If "pure thought" resides in the essence of these "mathematical forms," then where do these ensue from?


    See:

  • Navier-Stokes equations
  • Wednesday, October 11, 2006

    What is Cerenkov Radiation?

    ...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.Albert Einstein


    Many do not recognize the process that unfolds in the developing perspectives about theoretics? Does one think it is divorced from reality that you could say, "hey this idea of course has no attachment to what exists and what we know exists and asks that you move forward with it."

    Often you hear the "dreaded reference" to the AEther, and who can help but see where such revisions in thinking changed the society of scientists to put them on a new course?

    Do you think the title was changed from the aether to the valuation of strings and the boson production evident in the bulk just to replay itself in the developing scenarios of our historical past? The past included a revision to the way we view that concept? That is it's effect in today's world. "The correction?"

    As we know from Einstein’s theory of special relativity, nothing can travel faster than c, the velocity of light in a vacuum. The speed of the light that we see generally travels with a slower velocity c/n where n is the refractive index of the medium through which we view the light (in air at sea level, n is approximately 1.00029 whereas in water n is 1.33). Highly energetic, charged particles (which are only constrained to travel slower than c) tend to radiate photons when they pass through a medium and, consequently, can suddenly find themselves in the embarrassing position of actually travelling faster than the light they produce!

    The result of this can be illustrated by considering a moving particle which emits pulses of light that expand like ripples on a pond, as shown in the Figure (right). By the time the particle is at the position indicated by the purple spot, the spherical shell of light emitted when the particle was in the blue position will have expanded to the radius indicated by the open blue circle. Likewise, the light emitted when the particle was in the green position will have expanded to the radius indicated by the open green circle, and so on. Notice that these ripples overlap with each other to form an enhanced cone of light indicated by the dotted lines. This is analogous to the idea that leads to a sonic boom when planes such as Concorde travel faster than the speed of sound in air


    But we have to go back in history here to see where such influences have taken hold of the mind, from what was instituted in the neutrino search, to have the ideas swirl around and form new prospect researches, based on the ideas of women/men?



    The story will follow here shortly. I would like to thank Paul on his early recognition of the bubble chamber events as they encourage research in 1998 to ponder the experiments in Cern to say?

    Add your story so that this can be completed. I will add mine for a wonderful view of what research and developement does in regards to the way of "modelling to experiment."

    Well since starting this blog entry there has only been two other examples that may be added to this entry as of today, yet, one by Commentor NC at Cosmic Variance while the other materialized over at Backreaction on the post done by Bee and Stefan.

    A Look Back

    Have a look at this image below first.



    Variation of Cosmic ray flux and Global cloud coverage-a missing link in Solar-climate relationshipsby Henri Svensmark and Eigil Friis-Christensen, 26 NOvember 1996

    So this is wonderful that in one way, where my mind rebukes the lashing out of Peter Woit by evidence of ICECUBe and my ir/relevant comments, could have found sustenance in how things are to be explained further? More physics ...wonderful.

    But I want to go back historically to view, so that one sees what was a picture "written by Paul" and his trip to Canada, held an observation that sends us back in time experimentally to look at, to find out, what Cern was doing in 1998. Thanks Paul

    You ready?

    CERN plans global-warming experiment(1998)

    A controversial theory proposing that cosmic rays are responsible for global warming is to be put to the test at CERN, the European laboratory for particle physics. Put forward two years ago by two Danish scientists, Henrik Svensmark and Eigil Friis-Christensen, the theory suggests that it is changes in the Sun's magnetic field, and not the emission of greenhouse gases, that has led to recent rises in global temperatures.

    Experimentalists at CERN will use a cloud chamber to mimic the Earth's atmosphere in order to try and determine whether cloud formation is influenced by solar activity. According to the Danish theory, charged particles from the Sun deflect galactic cosmic rays (streams of high-energy particles from outer space) that would otherwise have ionized the Earth's lower atmosphere and formed clouds.


    So what is this science based on?

    The production of a high-intensity neutrino beam at CERN requires a complex facility. A proton beam produced and accelerated by the CERN accelerators is directed onto a graphite target to give birth to other particles called pions and kaons. These particles are then fed into a system comprising two magnetic horns which focus them into a parallel beam that is directed towards Gran Sasso. Next, in a 1000 metre-long tunnel, the pions and kaons decay into muons and muon neutrinos. At the end of this decay tunnel, an 18 metre thick block of graphite and metal absorbs the protons, pions and kaons that did not decay. The muons are stopped by the rock. Impervious to all such obstacles, the muon neutrinos will leave the CERN tunnels and streak through the rock on their 732 kilometre journey to Italy.


    Now what does this have to do with Cerenkov radiation? Okay. I'm scratching my head now.

    “CERN has a tradition of neutrino physics stretching back to the early 1960s,” said Dr Aymar, “this new project builds on that tradition, and is set to open a new and exciting phase in our understanding of these elusive particles.”


    From the 1960's. Wow!

    Imagine that someone might say to you that this is a "Rube Goldberg Machine" analogy as to what was the road leading to the understanding and the inclusiveness of microstate blackhole creation from particle collisions, as part of the continued story of the neutrino in action?

    See:

  • So What Did I mean By Olympics?
  • Pulsars and Cerenkov Radiation
  • Evidence for Extra Dimensions and IceCube
  • Monday, October 02, 2006

    The Periodic Table of the Moon's Strata


    Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)
    Clementine gravity experiment used measurements of perturbations in the motion of the spacecraft to infer the lunar gravity field


    Like Grace, I choose to build an understanding of the gravity fields.

    S-Band Transponder Doppler Gravity Experiment

    The gravity experiment used measurements of perturbations in the motion of the spacecraft to infer the lunar gravity field. Clementine was equipped with an S-band microwave transponder and 2 S-band omni-directional high-rate antennas which were used for tracking by the NRL tracking station in Pomonkey, MD, and the NASA Deep Space Network. The frequency of the S-band transmission was measured every 10 sec, and the Doppler shift would give the relative velocity of the spacecraft towards or away from the Earth. Accelerations were calculated from changes in the velocity, and after accounting for the orbit, relative motions of Earth and moon, and Earth and solar gravity, these accelerations are converted to lunar gravity effects on the spacecraft.
    The calculated lunar gravity field can be used to model subsurface lunar structure. The Pomonkey station could measure the velocity to an accuracy of 3 mm/sec, while the Deep Space Network stations could achieve about 0.3 mm/sec. Tracking was not possible on most of the lunar far side (120° to 240° long, -45° to 45° lat), when the moon was between the spacecraft and the Earth. In all, over 361,000 observations were made, approximately 57,000 at less than 1000 km altitude.


    As our physical interpretation of this lovely pearl(earth) we live on has changed in the conceptual views of "times clocks and such," it became evident in GRACE that the world was quite different then what was first view from space in triumph.

    As you might well know, all matter in the universe consists of small particles called atoms and each atom contains electrons that circle around a nucleus. This is how the world is made.
    If one places an atom (or a large piece of a matter containing billions and billions of atoms) in a magnetic field, electrons doing their circles inside do not like this very much. They alter their motion in such a way as to oppose this external influence.

    Incidentally, this is the most general principle of Nature: whenever one tries to change something settled and quiet, the reaction is always negative (you can easily check out that this principle also applies to the interaction between you and your parents). So, according to this principle, the disturbed electrons create their own magnetic field and as a result the atoms behave as little magnetic needles pointing in the direction opposite to the applied field*.



    But of course may I infer "floating ships" over mineral deposits that were conducive to transportation in regards to the superconductors, floating frogs and such? An "attenuator of a kind" for the strength's and weaknesses of such composite gatherings?

    But anyway before this "energy is considered in it's matter formed," how did such asymmetrical breaking from the origins not have ocnsidered such constitutions built on the very matters of the moon or such, in it's construction? In the end the gravity field is worth what?

    At SLAC and elsewhere in the 1990s, precision measurements probing quantum effects from physics at higher energy scales were very successful. Precision electroweak measurements accurately predicted the mass of the top quark before it was discovered at the Tevatron at Fermilab, and they were cited in the awarding of the 1999 Nobel Prize to Veltmann and t'Hooft, which recognized their work in developing powerful mathematical tools for calculating quantum corrections and demonstrating that the Standard Model was a renormalizable theory. The discovery and mass measurement of the top quark at Fermilab's Tevatron and the precise Z0 boson mass measurement from CERN experiments added to well established values for other Standard Model parameters, to allow predictions for the only Standard Model parameter not yet measured, the Higgs mass.



    What is a coupling constant? This is some number that tells us how strong an interaction is. Newton's constant GN, which appears in both Newton's law of gravity and the Einstein equation, is the coupling constant for gravitational interactions. For electromagnetism, the coupling constant is related to the electric charge through the fine structure constant a



    While the idea in my mind is "the extension of all elements demonstrated in some way arising from the standard model, what said that "this element or that" could not have been created from a oscillatory expression of the big bang, and the particles that issue forth, are not without some geometrical expression as "inhernet structures" of that table?



    As a "resonantial value" of a point along the length of the string?

    Dr. Timmothy Stowe's physicists periodic table



    So you see, I had a vision about the future. A time when I will work in space deploying satellites. But what said that future would not ascertain the requirements when our fossil fuels will have to be disregarded? Change the way the planets inhabitants will look forward to the benefits of such conceptual changes?

    So this is a fictional posting then, about that future.

    CP Violation

    The value of non-Euclidean geometry lies in its ability to liberate us from preconceived ideas in preparation for the time when exploration of physical laws might demand some geometry other than the Euclidean. Bernhard Riemann




    ON a macroscale the blackhole is a understanding of when we investigate curvature parameters with regards to the nature of our universe in spacetime. We understand this right?

    What are the "entropic valuations" being recognized as we look to a earlier time of when the QGP existed and then such manifestaion in the "matters states" have exemplified such characteristics as?


    Both space and spacetime can either be curved or flat.


    I am going to give you a quick summation of what GR is. It is about "Gravity." Now if you hold that in mind you should not loose any time with what I am telling you.

    Now, how is it that we can see the dynamcial nature of the universe, yet, we would not consider the effect of the presence of microstate blackholes in regards to such gatherings in the space, of what we call "spacetime?" What would "such gatherings" show of itself?


    A circle of radius r has a curvature of size 1/r. Therefore, small circles have large curvature and large circles have small curvature. The curvature of a line is 0. In general, an object with zero curvature is "flat."


    Think about the "circle" and it's 2D view of what the blackhole is doing in 3D +time in context of many blackholes. I always refer to "one" so you can see the comparative view that I am having little success in transferring to you, in what I am seeing.

    The curvature parameters are closely associated to the thermodynamic realizations. This is importnat not only on a cosmological level, but on a microstate as well.

    Lubos explains that here.

    Lubos:
    There are lots of other examples what you can do to increase the number of black holes. Change the couplings so that the stars burn their fuel faster, and they will collapse into black hole faster. Reduce the gap between the Planck scale and the QCD scale, and nuclear collisions will be more likely to end up as black holes.

    It is quite obvious that the change of virtually any parameter of the Standard Model (plus inflation) in the right direction (one of the two directions) will result in an increase of the number of black holes. How can you doubt such a trivial thing?


    So there is something about the nature of our universe and the balance that it seeks to maintain of itself? Here we are, looking at events within the cosmo and "secular views of it's manfiestation" different then other locations within the universe. Yet not apart from it, or not indifferent to it's nature to be part of a larger picture?



    Silicon Vertex Tracker. The SVT is the heart of the BABAR experiment at SLAC—in the photo, physicists are putting the finishing touches on improvements to the detector. (Photo Courtesy of Peter Ginter)
    SLAC's BaBar collaboration has discovered that CP violation—an asymmetry between the behavior of matter and antimatter—exists even in a very rare class of particle decays. This result offers the most sensitive avenue yet for exploring matter-antimatter asymmetries, with implications for the future understanding of physics beyond the Standard Model.

    "BaBar has proven to be a fantastic instrument for exploring the origins of matter-antimatter asymmetries, allowing us to probe with exquisite precision very rare processes related to how the early universe came to be matter dominated," said David MacFarlane, BaBar Spokesperson and Professor at the Stanford Linear Accelerator Center.


    So here we are having been given the example of CP violation above and here?

    How is it that anything could be asymmetrical? :) So you introduce anti-matter and matter?


    (ambigram courtesy John Langdon)
    If we could assemble all the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.


    As a observer Einstein made it clear that the observable universe has ideas attached to it. The "Pretty girl and the hot stove analogy" was compelling to those of us who recognized the values we may attach to life. "The Gravity of the situation?" How narrow our view of the world is when we feel the world is lost?

    But the hope and inspiration is, that the world has a bright future when we undertsand the implications of our views. Our involvement in the "toposense of reality? We are "part and parcel" of it?

    So, should we talk about the components of Heaven and Hell( my philosophical discourse on the nature of consciousness?)? You have to understand the picture and the dynamical nature this universe can say about it's entropic valuation?

    While I may have understood Omega, it didn't come to the nature it is by not including a geomtrical perspective about the nature of that same universe.

    That's my point. It had to arise from a earlier time and the manifestation is the matter states we are defining in correlation to the entropic valuations.

    While you see these as macro-characteristics and the relation to blackhole in 3d+time, the result is, a explanation of matter states in "macrostylistic beauty" we see in the events of the cosmo.

    If such inclinations to drive the energy to a ever smaller defined circle, as it gets smaller "the difference is" not so indiscernable that the events of the "particle showers" created are matter states that arise form the energy that was used.

    You see?:)

    The Ceiling

    The deeper implications of such a thought from perspective is focused upward? Yet such perspective can be made from other positions? So some minds were flexible? Others, were just engineers? ;)

    Understanding other worlds came naturally to him. Perhaps it was an inevitable consequence of being the child of Japanese Americans. His parents, though born in California, spent World War II behind barbed wire, guarded by people with machine guns: incarcerated by their own country as enemy aliens. Afterwards his father worked as a gardener, his mother a maid: two of the few jobs that were available to Japanese Americans. Kaku grew up poor, but one of the family treats was to visit the Japanese Tea Garden in San Francisco's Golden Gate Park. It turned out to be the place of a childhood epiphany. Wondering in the way that only a child does, Kaku looked at the carp swimming in a weedy pond and imagined how they would not be able to conceive of other worlds. "A carp engineer would believe that was all there is; but a carp physicist would see the ripples on the surface and start thinking about unseen dimensions," Kaku told me, laying the first of many lashes on his token engineer.


    The "ceiling" is the perspective of the carp, not the perspective of the "carp physicist."

    See:

  • Liminocentric Structures: Which Circle do you Belong Too?-Sunday, July 10, 2005


  • Ps: Some updates are curvature given for perspective. Think of a string, and any point on that string. What does the energy value of "that point" tell you in regards to the circle? The point on that string. It's just a way of looking at the string and the resonantial value assign along the string's length?

    Wednesday, September 13, 2006

    What's on the Condense Matter Theorist's Mind?

    The Theory of Everything


    Prof. Robert B. Laughlin


    The crystalline state is the simplest known example of a quantum , a stable state of matter whose generic low-energy properties are determined by a higher organizing principle and nothing else. Robert Laughlin


    Thre are certain perspective that are different then what reductionism has done to serves it's purpose? Now such ideas lanquish because they seem unfitting. So you gain perspective by those who think about things differently and see what parameters rule the logic of their ideas.

    In his book The End of Science John Horgan argues that our civilization is now facing barriers to the acquisition of knowledge so fundamental that the Golden Age of Science must must be thought of as over [38]. It is an instructive and humbling experience to attempt explaining this idea to a child. The outcome is always the same. The child eventually stops listening, smiles politely, and then runs off to explore the countless infinities of new things in his or her world. Horgan's book might more properly have been called the End of Reductionism, for it is actually a call to those of us concerned with the health of physical science to face the truth that in most respects the reductionist ideal has reached its limits as a guiding principle. Rather than a Theory of Everything we appear to face a hierarchy of Theories of Things, each emerging from its parent and evolving into its children as the energy scale is lowered. The end of reductionism is, however, not the end of science, or even the end of theoretical physics. How do proteins work their wonders? Why do magnetic insulators superconduct? Why is 3He a superfluid? Why is the electron mass in some metals stupendously large? Why do turbulent fluids display patterns? Why does black hole formation so resemble a quantum phase transition? Why do galaxies emit such enormous jets? The list is endless, and it does not include the most important questions of all, namely those raised by discoveries yet to come. The central task of theoretical physics in our time is no longer to write down the ultimate equations but rather but to catalogue and understand emergent behavior in its many guises, including potentially life itself. We call this physics of the next century the study of complex adaptive matter. For better or worse we are now witnessing a transition from the science of the past, so intimately linked to reductionism, to the study of complex adaptive matter, firmly based in experiment, with its hope for providing a jumping-off point for new discoveries, new concepts, and new wisdom.


    So for me as I look at the state of the world I am asking what patterns were pre-esstablished that would govern the higg's mechanison and looking for such a "organizational attribute" would have settled the question as to why people gathered around the professor as Einstein crossed the room.

    From a reductionsitic standpoint what was the "energy" doing as we used these colliders as mechanisims towards matter/mass comstituents discovery. Did this disavow our views on what was emergent from a point in spacetime?

    So of course I will draw people's attention to what I think has to come into "expression" and how this is done. What is the "basis" of that expression and how we will see it explode into the sociological valuation that constitutes our society of exchanges.

    I referred to John Nash here many times. What is it, he discovered at the heart of "negotiated processes?" What is the schematics of that expression that he identified in human behavior, as showing such schemas? Birds, that had some "higher organization pattern" that governed flock movement?

    So are strings a emergent phenomena? You had to know their place in the scheme of things. Do your recognized the method as to the nergy valuation given? How such branching is effected, based on some "Feynman toy model discription" that revealed what about the early universe?

    Edward Witten:
    One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics


    What about pushing "perspective back" to the microseconds? At what point does the Universe make itself known? Had you already forgotten about the "first three microseconds?"

    Monday, September 11, 2006

    Donald Coxeter: The Man Who Saved Geometry

    "I’m a Platonist — a follower of Plato — who believes that one didn’t invent these sorts of things, that one discovers them. In a sense, all these mathematical facts are right there waiting to be discovered."Harold Scott Macdonald (H. S. M.) Coxeter


    Some would stop those from continuing on, and sharing the world behind the advancements in geometry. I am very glad that I can move from the Salvador Dali image of the crucifixtion, to know, that minds engaged in the "pursuites of ideas" as they may "descend from heaven," may see in a man like Donald Coxeter, the way and means to have ideas enter his mind and explode in sociological functions? Hmmmm. what does that mean?



    Geometry is a branch of mathematics that deals with points, lines, angles, surfaces and solids. One of Coxeter’s major contributions to geometry was in the area of dimensional analogy, the process of stretching geometrical shapes into higher dimensions. He is also famous for “Coxeter groups,” the inversive distance between two disjoint circles (or spheres).


    It is not often we see where our views are shared with other people?

    I was doing some reading over at Lubos Motl's blog besides just getting the link for Michio Kaku article, I noticed this one too.

    You might think the loss of geometry | like the loss of, say, Latin would pass virtually unnoticed. This is the thing about geometry: we no more notice it than we notice the curve of the earth. To most people, geometry is a grade school memory of fumbling with protractors and memorizing the Pythagorean theorem. Yet geometry is everywhere. Coxeter sees it in honeycombs, sun°owers, froth and sponges. It's in the molecules of our food (the spearmint molecule is the exact geometric reaction of the caraway molecule), and in the computer-designed curves of a Mercedes-Benz. Its loss would be immeasurable, especially to the cognoscenti at the Budapest conference, who forfeit the summer sun for the somnolent glow of an overhead projector. They credit Coxeter with rescuing an art form as important as poetry or opera. Without Coxeter's geometry | as without Mozart's symphonies or Shakespeare's plays | our culture, our understanding of the universe,would be incomplete.


    Now you know what fascination I have with the geometries, as they have moved us towards the comprehension of GR and Reimann? Could Einstein have ever succeeded without him?

    Michael Atiyah:
    At this point in the development, although geometry provided a common framework for all the forces, there was still no way to complete the unification by combining quantum theory and general relativity. Since quantum theory deals with the very small and general relativity with the very large, many physicists feel that, for all practical purposes, there is no need to attempt such an ultimate unification. Others however disagree, arguing that physicists should never give up on this ultimate search, and for these the hunt for this final unification is the ‘holy grail’.


    Without stealing the limelight from Donald, I wanted to put the thinking of Michael Atiyah along side of him too. So you understand that those who speak about the "physics" have things underlying this process which help hold them to the very fabric of thinking.

    Some do not know of "this geometric process" I speak, where such manifestation arise from the very essence of the thinking soul. If you began to learn about yourself you would know that such abstractions are much closer to the "pure thought" then any would have realized.

    Some meditate to get to this essence. Some know, that in having gone through a journey of discovery that they will find the very patterns sealed within each of the souls.

    How does it arise? You had to follow this journey through the "muddle maze" of the dreaming mind to know that patterns in you can direct the vision of things according to what you yourself already do inherently.

    Now some of you "know," don't you, with regards to what I am saying? I spoke often of "Liminocetric structures" just to help you along, and help you realize that the sociological standing of exchange houses many forms of thinking that we had gained previously. Why as a soul of the "thinking mind" should you loose this part of yourself?

    So you begin with the "Platonic Forms" and look for the soccer ball/football? THis process resides at many levels and Dirac was very instrumental in speaking about the basis of the geometer and his vision of things. Along side of course the algebraic way.


    (Picture credit: AIP Emilio Sergè Visual Archives)


    This is very real, and not so abstract that you may have departed form the real world to say, you have lost touch? Do you think only "in a square box" and cannot percieve anything beyond the "condensive thoughts and model apprehensions" which hold you to your own design?

    Maybe? :)

    But the world is vast in terms of discovery, that the question of mathematics again draws us back too, was "Mathematics invented or discovered?" So "this premise" as a question formed and with it "the roads" that lead to inquiry?

    Al these forms of geometrics leading to question about "Quantum geometry" and how would such a cosmological world reveal to the thinkingmind "the microscopic" as part of the dynamical world of our everyday living?

    Only a cynic casts the diversions and illusions to what is real. Because they cannot inherently deal with the "strange language of geometrics" that issues forth in model apprehensions. This is the basis from which Einstein solved the problems of his day.

    But the question is what geometrics could ever reside at such a microscopic level?