Showing posts with label Consciousness. Show all posts
Showing posts with label Consciousness. Show all posts

Wednesday, May 22, 2013

The Old Wise Man

This post is materializing because of a post written by a Don McLeod on a article written at NPR 13.7 Cosmos and Culture called, " Facing Cancer, With A Robot Surgeon By My Side, by  Barbara J. King.

Don McLeod writes,
When I had cancer it appeared in my dreams as a bear.This probably sounds odd to you, crackpot even, given your background in the rational field of science, but dream symbols and science are not mutually exclusive. As my ultimately successful treatment progressed the bear began to reduce in size from an adult to a cub. Once cured, I was still anxious about the possibility of the cancer recurring, which prompted another dream which I will relate: I was out for a walk. I left the city and found myself walking on a trail in the wooded hills. It was a pleasant enough walk but at some point it occurred to me that if I were to encounter a bear on the trail I would be in trouble because I had no weapon, and if I climbed a tree the bear would climb up after me. As I pondered my vulnerability I heard footsteps approaching from behind. Turning around I saw a tall, thin man of about eighty years wearing a hat. He appeared spry and was long of stride. He appeared to me to be someone who had walked the outdoors for many years. So I stopped him and related my concern about bears and asked him how he handled such encounters. He told me bears posed no problem for him because he always carried "these". Then he opened his left hand which was full of vegetables of different varieties. He told me that whenever he encounters a bear he tosses the vegetables off to the side of the trail, causing the bear to chase after the veggies and thereby leaving him unmolested. Then I woke up. Dreams can often be confusing and difficult to interpret but his one required no deep thinking. The old hiker was the Wise Old Man, the seminal archetype of the collective unconscious. As we say in the hood, "This old dude be knowing s**t." I took his advice and became a vegetable hound, and now, thirteen years later I remain cancer free. The vegetables didn't cure my cancer of course, modern medical technology did that. But my unconscious, through dreams and images gave me insight about my cancer. In my case it was reassuring, yours may or may not be. Nonetheless, you may be entering the biggest knock-down-drag-out fight of your life and you will want all the information and help you can get. Your unconscious psyche will help you so pay attention to your dreams, write them down, and see what they tell you. You're a scientist. Observe your psyche and remain open to possibilities. Psyche is as much a part of Nature as everything else. (I add bold for emphasis)

I of course sympathize with Barbara J. King for the rode ahead and wish her all the best in the surgery. The purpose of this post is about how as individuals the use of power in symbols as relayed in Don's dream are effective at describing a process that was unfolding in him and the progression toward wellness being demonstrated when he saids, "As my ultimately successful treatment progressed the bear began to reduce in size from an adult to a cub."

This post is not about something you have to do in order to cure an illness, but more about what occurs on an everyday level that such events can travel deep inside you whether you are aware of the effect this has on you or not.

I saw correspondence in the type and illustration of the dream. It came from a earlier time in my life, that was very much similar in its subjectivity. This happen when I was quite young, and was already entertaining what it was I wanted to do with my life.

So the Old Wise Man becomes a symbol of sorts, and for those of you who have had similar experience, this is a profound imagery that is encapsulated in an old man with a white cloak and long white beard. How traditional then this figure that he is to reside in one's own head,  and that we are in a sense able to project the wisdom of self for our viewing.

So thus,  such imagery is to encapsulate something that is quite powerful as to convey knowledge that works to alleviate the concerns that runs deep in our souls. It is an answer to the question of what it is that is happening with our everyday life awareness. This is a consequence of daily living that somehow transcends the every day world we see  as a revelation that runs counter to that normal objective world.






The correspondence and power that was given was an understanding on such a deep level that it became a catalyst of sorts for the examination of such things in other people. Don's comment was a recognition for me of this powerful level of understanding that took place  as it was of a healing that occurred for him.

So also I added the labels of Socrates and Daemon at the bottom of this post. This was to exemplify facets of this understanding which grew from the experience I had at an age of about 12 years old. I also relay this information in a post given with regard to the Park.

The Park was written to show, that levels of perception that run deep inside are equal factors to which information may be drawn into oneself, given the framework of the reality that you had created. The Old Wise represents an aspect of your higher self which is to say that consciousness at that level does not find itself impeded from gaining true knowledge of those beyond ourselves to have then actually answer events in our every day lives.

So what you have done in essence is created a script that can become intelligible for the offering of information beyond the scope of inherent thinking suited to that daily process.

So it was important that I also examine efforts to help our minds be taken to levels of consciousness that may impart such opportunities for information to be given.  The basis for this thought process was to believe,  for me,  that all information will and has always existed.  It is that we only had to be reminded of such correspondences to say, such information even exists, but that such processes exist also in us all.

Monday, May 13, 2013

What is the Soul?

In Culture:The Ancient Greek word for "butterfly" is ψυχή (psȳchē), which primarily means "soul", "mind"

This is quite a challenge in a way.
Polish-American scientist and philosopher Alfred Korzybski remarked that "the map is not the territory", encapsulating his view that an abstraction derived from something, or a reaction to it, is not the thing itself. Korzybski held that many people do confuse maps with territories, that is, confuse models of reality with reality itself.Map–Territory Relation
What I was thinking here was symbols that represent the soul. Now I am not sure how well verse some people are in terms of the adventures they can take. So, lets say your a dreamer that remembers their dreams and you encounter "a book" and in that book you find a representation of who you are as a soul. What would this mean to you, since it symbolically now incorporates who you are as a soul and defines your territory?

By nature we like to map our progress and what this means, is what if one were to understand that each life is condensed, as if, into a symbol? That symbol may be like a time capsule awaiting to manifest into your reality now? It is part of your accomplishments. So at its basis each soul had this inclination and sought to simplify the totality of it's entire life so as to remember what was accomplished.
A mind map is a diagram used to represent words, ideas, tasks or other items linked to and arranged radially around a central key word or idea. It is used to generate, visualize, structure and classify ideas, and as an aid in study, organization, problem solving, decision making, and writing. It is an image-centered diagram that represents semantic or other connections between portions of information. By presenting these connections in a radial, non-linear graphical manner, it encourages a brainstorming approach to any given organizational task, eliminating the hurdle of initially establishing an intrinsically appropriate or relevant conceptual framework to work within. A mind map is similar to a semantic network or cognitive map but there are no formal restrictions on the kinds of links used. The elements are arranged intuitively according to the importance of the concepts and they are organized into groupings, branches, or areas. The uniform graphic formulation of the semantic structure of information on the method of gathering knowledge, may aid recall of existing memories.Mind map
You have no way of knowing what this symbol means and all you are given is this pictorial representation. How the heck are you to define such a symbol? That symbol, may be called a mandala.


The most important archetype of all is the self. The self is the ultimate unity of the personality and is symbolized by the circle, the cross, and the mandala figures that Jung was fond of painting. A mandala is a drawing that is used in meditation because it tends to draw your focus back to the center, and it can be as simple as a geometric figure or as complicated as a stained glass window. The personifications that best represent self are Christ and Buddha, two people who many believe achieved perfection. But Jung felt that perfection of the personality is only truly achieved in death Personality Theories
Here too, such abstractions help to pave the way for seeing the soul's ability to experience inner/outer and ways to describe inductive/deductive relations that we have with reality? While abstract, they give one the sense of interplay that goes on with an subjective/objective world.



This is a torus (like a doughnut) on which several circles are located. Unlike on a Euclidean plane, on this surface it is impossible to determine which circle is inside of which, since if you go from the black circle to the blue, to the red, and to the grey, you can continuously come back to the initial black, and likewise if you go from the black to the grey, to the red, and to the blue, you can also come back to the black.
Can you tell the difference? What does liminocentric mean?
If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'. A Conversation with Physicist Brian Greene
So lets examine out of context consciousness in relation too, the soul. For me continuity of thought is to form methods to our thinking and to construct models with which we adopt as part of our being in this life. So given the context of Mapping and territory this was interesting to me. This also spoke to the idea of mathematical models and how they are used in life to understand science processes, for example Riemann geometry that lies at the basis of relativity.
On the Hypotheses which lie at the Bases of Geometry. Bernhard Riemann Translated by William Kingdon Clifford
But before this, it was just plane Euclidean geometry with the understanding that you were in straight lines and such, as to be place before the the preponderance of the Parallel Postulate?
The value of non-Euclidean geometry lies in its ability to liberate us from preconceived ideas in preparation for the time when exploration of physical laws might demand some geometry other than the Euclidean. Bernhard Riemann
So by model development you become free from the constraints of your previous observations of the limitations Euclidean geometry forced upon you.
Almost all criticisms of Euclid up to the 19th century were centered on his fifth postulate, the so-called Parallel Postulate.The first half of the course dealt with various attempts by ancient, medieval, and (relatively) modern mathematicians to prove this postulate from Euclid's others.Seminar on the History of Hyperbolic Geometry, by Greg Schreiber
So that's the idea then is to recognize model development is more then the abstract connotation mathematical structure is given in face of what is real or not. This is important. You cannot ignore the reality in which you work, but for me ever the struggle to identify the substrate with which we not only embedded models into our thinking , but have their basis not only in this life, but are carried over.


Betrayal of Images" by Rene Magritte


The Belgian surrealist artist René Magritte illustrated the concept of "perception always intercedes between reality and ourselves"[5] in a number of paintings including a famous work entitled The Treachery of Images, which consists of a drawing of a pipe with the caption, Ceci n'est pas une pipe ("This is not a pipe"). In The Medium is the Massage, Marshall McLuhan rehashed the argument— that all media are "extensions" of our human senses, bodies and minds. This concept occurs in the discussion of exoteric and esoteric religions. Exoteric concepts are concepts which can be fully conveyed using descriptors and language constructs, such as mathematics. Esoteric concepts are concepts which cannot be fully conveyed except by direct experience. For example, a person who has never tasted an apple will never fully understand through language what the taste of an apple is. Only through direct experience (eating an apple) can that experience be fully understood.Mapping and territory
Through my own explorations and understanding is the context of what manifests in "as an explosion into reality" of such model schematic formulations, is to understand the larger context of the beliefs we form, have their constitutions from such a forming apparatus embedded within us? You gleam this from life as the basis of how might have been raised by your parents to assume, the meme's with which you assume come from there. Yet you learn to see that as a individual, that as you grow, such beliefs come into question because of the difference in your experiences. So you begin to form your own thoughts.
Thomas Kuhn

However, the incommensurability thesis is not Kuhn's only positive philosophical thesis. Kuhn himself tells us that “The paradigm as shared example is the central element of what I now take to be the most novel and least understood aspect of [The Structure of Scientific Revolutions]” (1970a, 187). Nonetheless, Kuhn failed to develop the paradigm concept in his later work beyond an early application of its semantic aspects to the explanation of incommensurability. The explanation of scientific development in terms of paradigms was not only novel but radical too, insofar as it gives a naturalistic explanation of belief-change. Naturalism was not in the early 1960s the familiar part of philosophical landscape that it has subsequently become. Kuhn's explanation contrasted with explanations in terms of rules of method (or confirmation, falsification etc.) that most philosophers of science took to be constitutive of rationality. Furthermore, the relevant disciplines (psychology, cognitive science, artificial intelligence) were either insufficiently progressed to support Kuhn's contentions concerning paradigms, or were antithetical to them (in the case of classical AI). Now that naturalism has become an accepted component of philosophy, there has recently been interest in reassessing Kuhn's work in the light of developments in the relevant sciences, many of which provide corroboration for Kuhn's claim that science is driven by relations of perceived similarity and analogy to existing problems and their solutions (Nickles 2003b, Nersessian 2003). It may yet be that a characteristically Kuhnian thesis will play a prominent part in our understanding of science.
As real is the understanding that objective reality exists, so does the subjective reality, in so far as we understand that "belief change can exist," our world view can change. That we can change our views of the world by "truly grokking and experiencing." Any accomplishment then is to recognize the platform from which you came, then is to advance one's growth? What use any model then, to not take into consideration the method by which you have made assumptions. These, had come from "models of perception" before?
Observations Pay Off


Anomaly and the Emergence of Scientific Discoveries Kuhn now moves past his initial topic of paradigm to scientific discovery saying that in order for there to be a discovery, an anomaly must be detected within the field of study. He discusses several different studies and points out the anomaly that invoked the scientific discovery. Later in the chapter he begins to discuss how the anomaly can be incorporated into the discovery to satisfy the scientific community.
There are three different characteristics of all discoveries from which new sorts of phenomena emerge. These three characteristics are proven through an experiment dealing with a deck of cards. The deck consisted of anomalous cards (e.g. the red six of spades shown on the previous page) mixed in with regular cards. These cards were held up in front of students who were asked to call out the card they saw, and in most cases the anomaly was not detected.(link now dead)


The example given is to understand the nuances in life are like nagging questions as to what is bothering one according to an assumption made or taken for granted. Reality for instance.

It is important to find such anomalies so as to record how belief change is possible. While we secure our beliefs in reality, such excursions to beyond the limitations of our belief, are essential to "grow more?"

Friday, April 26, 2013

Origins of Life Question?



Is it more astonishing that a God created all that exists in six days, or that the natural processes of the creative universe have yielded galaxies, chemistry, life, agency, meaning, value, consciousness, culture without a Creator. In my mind and heart, the overwhelming answer is that the truth as best we know it, that all arose with no Creator agent, all on its wondrous own, is so awesome and stunning that it is God enough for me and I hope much of humankind.
BEYOND REDUCTIONISM: REINVENTING THE SACRED

The COOL EDGE Workshop was the brainchild of American theoretical biologist and expert in the complexity of biological systems and organisms, Stuart Kauffman. “If we do not organize our field we are in danger of drifting into scattered, uncoordinated groups that make little progress,” said Kauffman in an interview with the CERN Bulletin after the first meeting in 2011. “By coordinating our efforts, we believe we can make more rapid strides.”

“We are happy to share our experience with large-scale collaborations with the life scientists participating in the COOL EDGE Workshop 2013,” says Sergio Bertolucci, director for research and computing who opened the meeting on Tuesday. “The CERN model is an example (and a successful one!) of how large international collaborations can actually work. We are happy if we can also be of help to other communities.” See:
CERN, life science and the origins of life



See Also:

The workshop at the CERN meeting focused attention on the metabolism first approach. Both it and the RNA world need exploration. The meeting ended with a proposal to get the research community organized behind a common effort, hopefully benefiting from the experience of CERN in fostering international collaboration.




Tuesday, February 19, 2013

Consciousness Research and Michael Persinger


Michael A. Persinger (born June 26, 1945) is a cognitive neuroscience researcher and university professor with over 200 peer-reviewed publications. He has worked at Laurentian University, located in Sudbury, Ontario, since 1971. He is primarily notable for his experimental work in the field of neurotheology, work which has been increasingly criticized in recent years.[1][2][3][4][5][6]

 Persinger MA[Author] Papers

 
Michael Persinger’s Group at Laurentian University, Canada, have obtained groundbreaking new results in consciousness, quantum brain & nonlocality research which are published in this Special Issue. These new results together with what have already been achieved in these fields in the past such as the results of Hu & Wu, Persinger’s team and some of other researchers have important implications for further advancements of these fields.See: Groundbreaking New Results in Consciousness, Quantum Brain & Nonlocality Research
See: 

A few might see a world of possibility in Persinger's theories. His booth has helped us discover and confirm our true predicament. "Seeing God" is really just a soothing euphemism for the fleeting awareness of ourselves alone in the universe: a look in that existential mirror. The "sensed presence" - now easily generated by a machine pumping our brains with electromagnetic spirituality - is nothing but our exquisite and singular self, at one with the true solitude of our condition, deeply anxious. We're itching to get out of here, to escape this tired old environment with its frayed carpets, blasted furniture, and shabby old God. Time to move on and discover true divinity all over again. This Is Your Brain on God By Jack Hitt



See Also:

Monday, February 18, 2013

History Displays Newton's Optics and Organic Chemistry?



 The Errors & Animadversions of Honest Isaac Newton

by Sheldon Lee Glashow


ABSTRACT:

Isaac Newton was my childhood hero. Along with Albert Einstein, he one of the greatest scientists ever, but Newton was no saint. He used his position to defame his competitors and rarely credited his colleagues.His arguments were sometimes false and contrived, his data were often fudged, and he exaggerated the accuracy of his calculations. Furthermore, his many religious works (mostly unpublished) were nonsensical or mystical, revealing him to be a creationist at heart. My talk offers a sampling of Newton’s many transgressions, social, scientific and religious.

This is an entry in progress but if one has been following one may have asked indeed where did such a history begin to say that in today's world there is this emergence of the trades in combination. Theoretical Physics and Organic Chemistry.

You may be familiar with Isaac Newton from such inventions as calculus and the law of universal gravitation. What you may not know is that he was also an avid "chymist," or alchemist. In fact, Newton actually wrote roughly a million words about alchemy and his experiments with it — as Indiana University science historian William Newman has noted, Newton probably spent more time doing alchemy than he did on any of his other scientific pursuits. See: Incredible videos recreate Isaac Newton’s experiments with alchemy

Analysis of white light by dispersing it with a prism is an example of spectroscopy
 
So while looking at the future it is always interesting to see where such thought predate the thinking that cross pollination with regard to the science could have seen any benefit in looking at Spectroscopy. So you can see where I might have displayed an ancient idea suggested of alchemy as to the psychology as an end result of the complexity of simple formulation of the physics of things we did not see useful before.

It forces my thinking as to the assumptions that will eventually reveal the nature of our thoughts processes and evidences as existing in the idea of consciousnesses explained?

There is no doubt there is some relevance in my thinking that what may be termed spiritual may have some weight attached to how I think we may be held to our experiences. How the weight of our experiences could have affects as to what is perceivable outside the parameters of and circumference of our established lives.  On a classical level, the matter distinctions are apparent and anything beyond that as related too, quantum effects,  is a much more deeper request for new and measurable techniques to the psychology of our being and examination of what consciousness really is?

Thursday, February 14, 2013

Jim Al-Khalili and the Quantum Robin



 http://youtu.be/jepgOQEvWT0
We've known for some time that certain animals can navigate the Earth using it's magnetic fields, but the methods by which they do this have remained largely unknown. However, an emerging field known as quantum biology is shedding light on this area and suggests that nature maybe taking advantage of quantum mechanics to develop its biological compass systems.
Physicist Jim Al-Khalili looks at one bird in particular, the European Robin, and how this species of migratory bird may be relying on the strange rules of quantum entanglement to find its way south each year.
Watch Jim's Friday Evening Discourse on the subject of Quantum Biology to find out more about the weird intersection between quantum mechanics and biology:http://bit.ly/X826sE

See Also:




Proton Tunneling in DNA and its Biological Implications by Per-Olov Lowdin


Proton Tunneling in DNA and its Biological Implications by Per-Olov Lowdin




See Also:

Tuesday, February 12, 2013

Quantum Biology



The frequency of vibration of an object is, among other things, a function of mass: A heavy guitar string vibrates more slowly than a light one and produces a lower tone. These tiny cantilevers vibrate at radio frequencies, in the 1 to 15 megahertz range, and because they are so small to begin with, adding just a tiny bit more mass will make a measurable change in frequency.
For cell detection, the researchers coated their cantilevers with antibodies that bind to E. coli bacteria, then bathed the devices in a solution containing the cells. Some of the cells were bound to the surface, and the additional mass changed the frequency of vibration. In one case just one cell happened to bond to a cantilever, and it was possible to detect the mass of the single cell.
‘Nano’ Becomes ‘Atto’ and Will Soon Be ‘Zepto’ for Cornell - New Technology

As soon as you use the word "quantum" there is a easy assessment for a scientist who deals with reduction-ism to have it sorted out as to what levels of perception are being forced upon  a definition and understanding. A measurable quantity of something? For us lay people, it is never that easy.

 quan-tum (kwntm)
n. pl. quan·ta (-t)
1. A quantity or amount.
2. A specified portion.
3. Something that can be counted or measured.
4. Physics
a. The smallest amount of a physical quantity that can exist independently, especially a discrete quantity of electromagnetic radiation.
b. This amount of energy regarded as a unit.
adj.
Relating to or based upon quantum mechanics.

[Latin, from neuter of quantus, how great; see quantity.]

So suffice is it to say that by demonstrating this scalable reference to the values and options in recognition of the Powers of Ten,  we realize the depth with which we need participation. That through use of manufacture,  as for any of us to say such a thing that which is not observable normally, can we say then exists for us? We have all taken it for granted, even a scientist perhaps to realize how one can divvy up their day as to say at times our perception was much deeper in to the reality then previously confirmed?




Have we gotten so far into our assumptions of the world that we would not further entertain the idea that consciousness emerges from something. Consciousness that is so subtle that we have not really to this date been able to reproduce what consciousness actually looks like. Categorized consciousness at this wanted measurable level of perception that is needed.


Can we say we have always measured around it, and can shows signs of something going on in terms of biological exchange, but have as yet not been able to assess this function as nothing more then some abstract creature of design that we lack for distinct measurable quantities?







Quantum biology refers to applications of quantum mechanics to biological objects and problems. Usually, it is taken to refer to applications of the "non-trivial" quantum features such as superposition, nonlocality, entanglement and tunneling, as opposed to the "trivial" applications such as chemical bonding which apply to biology only indirectly by dictating quantum chemistry.
Austrian born physicist and theoretical biologist Erwin Schrödinger was one of the first scientists to suggest a study of quantum biology in his 1946 book "What is Life?"

Contents

Applications

Many biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve chemical reactions, light absorption, formation of excited electronic states, transfer of excitation energy, and the transfer of electrons and protons (hydrogen ions) in chemical processes such as photosynthesis and cellular respiration.[1] Quantum biology uses computation to model biological interactions in light of quantum mechanical effects.[2]
Some examples of the biological phenomena that have been studied in terms of quantum processes are the absorbance of frequency-specific radiation (i.e., photosynthesis[3] and vision[4]); the conversion of chemical energy into motion;[5] magnetoreception in animals,[6][7] DNA mutation [8] and brownian motors in many cellular processes.[9]
Recent studies have identified quantum coherence and entanglement between the excited states of different pigments in the light-harvesting stage of photosynthesis.[10][11] Although this stage of photosynthesis is highly efficient, it remains unclear exactly how or if these quantum effects are relevant biologically.[12]

Notes

  1. ^ Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. http://www.ks.uiuc.edu/Research/quantum_biology/
  2. ^ http://www.sciencedaily.com/releases/2007/01/070116133617.htm Science Daily Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14, 2007
  3. ^ Quantum Secrets of Photosynthesis Revealed
  4. ^ Garab, G. (1999). Photosynthesis: Mechanisms and Effects: Proceedings of the XIth International Congress on Photosynthesis. Kluwer Academic Publishers. ISBN 978-0-7923-5547-2.
  5. ^ Levine, Raphael D. (2005). Molecular Reaction Dynamics. Cambridge University Press. pp. 16–18. ISBN 978-0-521-84276-1.
  6. ^ Binhi, Vladimir N. (2002). Magnetobiology: Underlying Physical Problems. Academic Press. pp. 14–16. ISBN 978-0-12-100071-4.
  7. ^ Erik M. Gauger, Elisabeth Rieper, John J. L. Morton, Simon C. Benjamin, Vlatko Vedral: Sustained quantum coherence and entanglement in the avian compass, Physics Review Letters, vol. 106, no. 4, 040503 (2011) (abstract, preprint)
  8. ^ Lowdin, P.O. (1965) Quantum genetics and the aperiodic solid. Some aspects on the Biological problems of heredity, mutations, aging and tumours in view of the quantum theory of the DNA molecule. Advances in Quantum Chemistry. Volume 2. pp213-360. Acedemic Press
  9. ^ Harald Krug; Harald Brune, Gunter Schmid, Ulrich Simon, Viola Vogel, Daniel Wyrwa, Holger Ernst, Armin Grunwald, Werner Grunwald, Heinrich Hofmann (2006). Nanotechnology: Assessment and Perspectives. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. pp. 197–240. ISBN 978-3-540-32819-3.
  10. ^ Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta (2010). "Quantum entanglement in photosynthetic light-harvesting complexes". Nature Physics 6 (6): 462–467. arXiv:0905.3787. Bibcode 2010NatPh...6..462S. doi:10.1038/nphys1652.
  11. ^ Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC et al. (2007). "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.". Nature 446 (7137): 782–6. Bibcode 2007Natur.446..782E. doi:10.1038/nature05678. PMID 17429397.
  12. ^ Scholes GS (2010). "Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?". Journal of Physical Chemistry Letters 1: 2–8. doi:10.1021/jz900062f.

Further reading

External links





Photos By: Illustration by Megan Gundrum, fifth-year DAAP student




See Also:

Monday, February 11, 2013

The Emerging Physics of Consciousness

This is an interesting post for me because of what I wanted to portray as the signs and length scale used in the determinations of quantum effects associated with the use of consciousness. As well to understand the historical beginnings and questions about what began in this area was preceded by the thoughts and likes of Schrodinger in his article displayed in the post previous. This consensus for me was about the understanding as biological systems whose definition sought to seek such quantum affects as methods used by or status as human beings to demonstrate such abilities.


There are three broad kinds of experiments that one can devise to test hypotheses involving the relevance of quantum effects to the phenomenon of conscious ness. The three kinds address three different scale ranges associated roughly with tissue-to-cell (1cm-10 μ m), cell-to- protein (10 μ m-10nm) and protein-to-atom (10nm-1Å) sizes. Note that we are excluding experiments that aim to detect quantum effects at the “whole hum an” or even “society” level as these have consistently given either negative results or been plagued by irreproducibility and bad science (e.g. the various extra sensory perception and remote viewing experiments [4]). TOWARDS EXPERIMENTAL TESTS OF QUANTUM EFFECTS IN CYTOSKELETAL PROTEINS

First on my mind is and was the idea of the Olfactory experience. As well,  the idea of a photosynthesis as a capability and recognition of such an ability "as a distributor of of such quantum effects." Bird navigation using the earths magnetic feild.

You must understand that by no means do I pretend to know all of the answer, is  more to demonstrate the learning that is going on toward dealing with some of the things that are demonstrative of understanding quantum effects as a  measurable things. A measurable thing,  that we as conscious beings make use of. A measurable thing in which we wish to emulate in quantum computing effects as measurable things to increase our depths of perception. Too Robotize.

We are creating machines with which to extend our perceptions in space and on Mars. Space travel and designated satellite space craft with which to examine that environment.


Big Ideas presents Seth Lloyd of the Massachusetts Institute for Technology on Quantum Life, how organisms have evolved to make use of quantum effects.


Also too then is the idea that such progress to provide sensor data which extends our range of perspective,  as  measures also help us to see consciousness as a useful thing.  Consciousness's layers,  which help to provide depth and understanding,  using such data observation.


Statistical and applied probabilistic knowledge is the core of knowledge; statistics is what tells you if something is true, false, or merely anecdotal; it is the "logic of science"; it is the instrument of risk-taking; it is the applied tools of epistemology; you can't be a modern intellectual and not think probabilistically—but... let's not be suckers. The problem is much more complicated than it seems to the casual, mechanistic user who picked it up in graduate school. Statistics can fool you. In fact it is fooling your government right now. It can even bankrupt the system (let's face it: use of probabilistic methods for the estimation of risks did just blow up the banking system).THE FOURTH QUADRANT: A MAP OF THE LIMITS OF STATISTICS [9.15.08]  By Nassim Nicholas Taleb

Such depths are required to analyze the economic functions in society, as  requiring more sensitive fundamental measures since being betray by political influence. This is so as to see the economy "as tool to influence." Greater then is the question to identify aspects of these models with which consciousness uses,  so as to demonstrate aspect and dealings "as attributes" in that society. It requires a greater depth of perception then ever required before? So shall we say then that the economy suffers from no quantum effects at all?


Nassim Nicholas Taleb - What is a "Black Swan?"

Of course, I am not going to be most perfect in the science understanding which always begs for those that are the willing in science to help correct any mistakes that I may be perpetrating as a science enthusiast. Again caution here as to my status as a layman.

Saturday, February 09, 2013

What is Life?

WHAT IS LIFE? ERWIN SCHRODINGER

First published 1944 What is life? 

The Physical Aspect of the Living Cell. Based on lectures delivered under the auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin, in February 1943.



What Is Life? is a 1944 non-fiction science book written for the lay reader by physicist Erwin Schrödinger. The book was based on a course of public lectures delivered by Schrödinger in February 1943, under the auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin. The lectures attracted an audience of about 400, who were warned "that the subject-matter was a difficult one and that the lectures could not be termed popular, even though the physicist’s most dreaded weapon, mathematical deduction, would hardly be utilized."[1] Schrödinger's lecture focused on one important question: "how can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?"[1]

In the book, Schrödinger introduced the idea of an "aperiodic crystal" that contained genetic information in its configuration of covalent chemical bonds. In the 1950s, this idea stimulated enthusiasm for discovering the genetic molecule. Although the existence of DNA had been known since 1869, its role in reproduction and its helical shape were still unknown at the time of Schrödinger's lecture. In retrospect, Schrödinger's aperiodic crystal can be viewed as a well-reasoned theoretical prediction of what biologists should have been looking for during their search for genetic material. Both James D. Watson,[2] and independently, Francis Crick, co-discoverers of the structure of DNA, credited Schrödinger's book with presenting an early theoretical description of how the storage of genetic information would work, and each respectively acknowledged the book as a source of inspiration for their initial researches.[3]

Contents

Background


The book is based on lectures delivered under the auspices of the Institute at Trinity College, Dublin, in February 1943 and published in 1944. At that time DNA was not yet accepted as the carrier of hereditary information, which only was the case after the Hershey–Chase experiment of 1952. One of the most successful branches of physics at this time was statistical physics, and quantum mechanics, a theory which is also very statistical in its nature. Schrödinger himself is one of the founding fathers of quantum mechanics.
Max Delbrück's thinking about the physical basis of life was an important influence on Schrödinger.[4] Geneticist and 1946 Nobel-prize winner H.J. Muller had in his 1922 article "Variation due to Change in the Individual Gene"[5] already laid out all the basic properties of the heredity molecule that Schrödinger derives from first principles in What is Life?, properties which Muller refined in his 1929 article "The Gene As The Basis of Life"[6] and further clarified during the 1930s, long before the publication of What is Life?[7] [verification needed] But the role of the macromolecule DNA as the genetic material was not yet suspected in 1929, rather, some form of protein was expected to be the genetic material at that time.

Content


In chapter I, Schrödinger explains that most physical laws on a large scale are due to chaos on a small scale. He calls this principle "order-from-disorder." As an example he mentions diffusion, which can be modeled as a highly ordered process, but which is caused by random movement of atoms or molecules. If the number of atoms is reduced, the behaviour of a system becomes more and more random. He states that life greatly depends on order and that a naive physicist may assume that the master code of a living organism has to consist of a large number of atoms.

In chapter II and III, he summarizes what was known at this time about the hereditary mechanism. Most importantly, he elaborates the important role mutations play in evolution. He concludes that the carrier of hereditary information has to be both small in size and permanent in time, contradicting the naive physicist's expectation. This contradiction cannot be resolved by classical physics.

In chapter IV, Schrödinger presents molecules, which are indeed stable even if they consist of only a few atoms, as the solution. Even though molecules were known before, their stability could not be explained by classical physics, but is due to the discrete nature of quantum mechanics. Furthermore mutations are directly linked to quantum leaps.
He continues to explain, in chapter V, that true solids, which are also permanent, are crystals. The stability of molecules and crystals is due to the same principles and a molecule might be called "the germ of a solid." On the other hand an amorphous solid, without crystalline structure, should be regarded as a liquid with a very high viscosity. Schrödinger believes the heredity material to be a molecule, which unlike a crystal does not repeat itself. He calls this an aperiodic crystal. The aperiodic nature allows to encode an almost infinite number of possibilities with a small number of atoms. He finally compares this picture with the known facts and finds it in accordance with them.
In chapter VI Schrödinger states:

...living matter, while not eluding the "laws of physics" as established up to date, is likely to involve "other laws of physics" hitherto unknown, which however, once they have been revealed, will form just as integral a part of science as the former.
He knows that this statement is open to misconception and tries to clarify it. The main principle involved with "order-from-disorder" is the second law of thermodynamics, according to which entropy only increases in a closed system (such as the universe). Schrödinger explains that living matter evades the decay to thermodynamical equilibrium by homeostatically maintaining negative entropy (today this quantity is called information[8]) in an open system.

In chapter VII, he maintains that "order-from-order" is not absolutely new to physics; in fact, it is even simpler and more plausible. But nature follows "order-from-disorder", with some exceptions as the movement of the celestial bodies and the behaviour of mechanical devices such as clocks. But even those are influenced by thermal and frictional forces. The degree to which a system functions mechanically or statistically depends on the temperature. If heated, a clock ceases to function, because it melts. Conversely, if the temperature approaches absolute zero, any system behaves more and more mechanically. Some systems approach this mechanical behaviour rather fast with room temperature already being practically equivalent to absolute zero.

Schrödinger concludes this chapter and the book with philosophical speculations on determinism, free will, and the mystery of human consciousness. He believes he must reconcile two premises: (1) the body fully obeys the laws of quantum mechanics, where quantum indeterminacy plays no important role except to increase randomness at the quantum scale; and (2) there is "incontrovertible direct experience" that we freely direct our bodies, can predict outcomes, and take responsibility for our choice of action. Schrödinger rejects the idea that the source of consciousness should perish with the body because he finds the idea "distasteful". He also rejects the idea that there are multiple immortal souls that can exist without the body because he believes that consciousness is nevertheless highly dependent on the body. Schrödinger writes that, to reconcile the two premises,
The only possible alternative is simply to keep to the immediate experience that consciousness is a singular of which the plural is unknown; that there is only one thing and that what seems to be a plurality is merely a series of different aspects of this one thing...
Any intuitions that consciousness is plural, he says, are illusions. Schrödinger is sympathetic to the Hindu concept of Brahman, by which each individual's consciousness is only a manifestation of a unitary consciousness pervading the universe - which corresponds to the Hindu concept of God. Schrödinger concludes that "...'I' -am the person, if any, who controls the 'motion of the atoms' according to the Laws of Nature. However, he also qualifies the conclusion as "necessarily subjective" in its "philosophical implications." In the final paragraph, he points out that what is meant by "I" is not the collection of experienced events but "namely the canvas upon which they are collected." If a hypnotist succeeds in blotting out all earlier reminiscences, he writes, there would be no loss of personal existence - "Nor will there ever be."[9]

Schrödinger's "paradox"


In a world governed by the second law of thermodynamics, all isolated systems are expected to approach a state of maximum disorder. Since life approaches and maintains a highly ordered state - some argue that this seems to violate the aforementioned Second Law implicating a paradox. However, since life is not an isolated system, there is no paradox. The increase of order inside an organism is more than paid for by an increase in disorder outside this organism. By this mechanism, the Second Law is obeyed, and life maintains a highly ordered state, which it sustains by causing a net increase in disorder in the Universe. In order to increase the complexity on Earth - as life does - you need energy. Most of the energy for life here on Earth is provided by the Sun.

 

See also

 

References

  1. ^ a b Margulis, Lynn. & Sagan, Dorion. (1995). What Is Life? (pg. 1). Berkeley: University of California Press.
  2. ^ Watson, James D. (2007), Avoid Boring People: (Lessons from a life in science), New York: Knopf, p. 353, ISBN 978-0-375-41284-4. Page 28 details how Watson came to appreciate the significance of the gene.
  3. ^ Julian F. Derry (2004). "Book Review: What Is Life? By Erwin Schrödinger". Human Nature Review. Retrieved 2007-07-15.
  4. ^ Dronamraju KR (November 1999). "Erwin Schrödinger and the origins of molecular biology". Genetics 153 (3): 1071–6. PMC 1460808. PMID 10545442.
  5. ^ American Naturalist 56 (1922)
  6. ^ Proceedings of the International Congress of Plant Sciences 1 (1929)
  7. ^ Schwartz, James (2008). In Pursuit of the Gene. From Darwin to DNA. Cambridge: Harvard University Press. ISBN 978-0-674-02670-4.
  8. ^ Shannon, Claude; Weaver, Warren (1949), The Mathematical Theory of Communication, ISBN 0-252-72546-8
  9. ^ Schrödinger references The Perennial Philosophy by Aldous Huxley as a "beautiful book" leveling with the view he has taken in the last chapter.

 

Other cited literature

 

External links



See Also: