Showing posts with label AMS. Show all posts
Showing posts with label AMS. Show all posts

Thursday, December 09, 2010

Muon










The Moon's cosmic ray shadow, as seen in secondary muons generated by cosmic rays in the atmosphere, and detected 700 meters below ground, at the Soudan II detector.
Composition: Elementary particle
Particle statistics: Fermionic
Group: Lepton
Generation: Second
Interaction: Gravity, Electromagnetic,
Weak
Symbol(s): μ
Antiparticle: Antimuon (μ+)
Theorized:
Discovered: Carl D. Anderson (1936)
Mass: 105.65836668(38) MeV/c2
Mean lifetime: 2.197034(21)×10−6 s[1]
Electric charge: −1 e
Color charge: None
Spin: 12


The muon (from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with a negative electric charge and a spin of ½. Together with the electron, the tau, and the three neutrinos, it is classified as a lepton. It is an unstable subatomic particle with the second longest mean lifetime (2.2 µs), exceeded only by that of the free neutron (~15 minutes). Like all elementary particles, the muon has a corresponding antiparticle of opposite charge but equal mass and spin: the antimuon (also called a positive muon). Muons are denoted by μ and antimuons by μ+. Muons were previously called mu mesons, but are not classified as mesons by modern particle physicists (see History).

Muons have a mass of 105.7 MeV/c2, which is about 200 times the mass of an electron. Since the muon's interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons are not as sharply accelerated when they encounter electromagnetic fields, and do not emit as much bremsstrahlung radiation. Thus muons of a given energy penetrate matter far more deeply than electrons, since the deceleration of electrons and muons is primarily due to energy loss by this mechanism. So-called "secondary muons", generated by cosmic rays hitting the atmosphere, can penetrate to the Earth's surface and into deep mines.

As with the case of the other charged leptons, the muon has an associated muon neutrino. Muon neutrinos are denoted by νμ.

Contents

History

Muons were discovered by Carl D. Anderson and Seth Neddermeyer at Caltech in 1936, while studying cosmic radiation. Anderson had noticed particles that curved differently from electrons and other known particles when passed through a magnetic field. They were negatively charged but curved less sharply than electrons, but more sharply than protons, for particles of the same velocity. It was assumed that the magnitude of their negative electric charge was equal to that of the electron, and so to account for the difference in curvature, it was supposed that their mass was greater than an electron but smaller than a proton. Thus Anderson initially called the new particle a mesotron, adopting the prefix meso- from the Greek word for "mid-". Shortly thereafter, additional particles of intermediate mass were discovered, and the more general term meson was adopted to refer to any such particle. To differentiate between different types of mesons, the mesotron was in 1947 renamed the mu meson (the Greek letter μ (mu) corresponds to m).
It was soon found that the mu meson significantly differed from other mesons: for example, its decay products included a neutrino and an antineutrino, rather than just one or the other, as was observed with other mesons. Other mesons were eventually understood to be hadrons—that is, particles made of quarks—and thus subject to the residual strong force. In the quark model, a meson is composed of exactly two quarks (a quark and antiquark) unlike baryons, which are composed of three quarks. Mu mesons, however, were found to be fundamental particles (leptons) like electrons, with no quark structure. Thus, mu mesons were not mesons at all (in the new sense and use of the term meson), and so the term mu meson was abandoned, and replaced with the modern term muon.

Another particle (the pion, with which the muon was initially confused) had been predicted by theorist Hideki Yukawa:[2]

"It seems natural to modify the theory of Heisenberg and Fermi in the following way. The transition of a heavy particle from neutron state to proton state is not always accompanied by the mission of light particles. The transition is sometimes taken up by another heavy particle."

The existence of the muon was confirmed in 1937 by J. C. Street and E. C. Stevenson's cloud chamber experiment.[3] The discovery of the muon seemed so incongruous and surprising at the time that Nobel laureate I. I. Rabi famously quipped, "Who ordered that?"

In a 1941 experiment on Mount Washington in New Hampshire, muons were used to observe the time dilation predicted by special relativity for the first time.[4]

Muon sources

Since the production of muons requires an available center of momentum frame energy of 105.7 MeV, neither ordinary radioactive decay events nor nuclear fission and fusion events (such as those occurring in nuclear reactors and nuclear weapons) are energetic enough to produce muons. Only nuclear fission produces single-nuclear-event energies in this range, but do not produce muons as the production of a single muon would violate the conservation of quantum numbers (see under "muon decay" below).

On Earth, most naturally occurring muons are created by cosmic rays, which consist mostly of protons, many arriving from deep space at very high energy[5]

About 10,000 muons reach every square meter of the earth's surface a minute; these charged particles form as by-products of cosmic rays colliding with molecules in the upper atmosphere. Travelling at relativistic speeds, muons can penetrate tens of meters into rocks and other matter before attenuating as a result of absorption or deflection by other atoms.

When a cosmic ray proton impacts atomic nuclei of air atoms in the upper atmosphere, pions are created. These decay within a relatively short distance (meters) into muons (the pion's preferred decay product), and neutrinos. The muons from these high energy cosmic rays generally continue in about the same direction as the original proton, at a very high velocity. Although their lifetime without relativistic effects would allow a half-survival distance of only about 0.66 km (660 meters) at most (as seen from Earth) the time dilation effect of special relativity (from the viewpoint of the Earth) allows cosmic ray secondary muons to survive the flight to the Earth's surface, since in the Earth frame, the muons have a longer half-life due to their velocity. From the viewpoint (inertial frame) of the muon, on the other hand, it is the length contraction effect of special relativity which allows this penetration, since in the muon frame, its lifetime is unaffected, but the distance through the atmosphere and earth appears far shorter than these distances in the Earth rest-frame. Both are equally valid ways of explaining the fast muon's unusual survival over distances.

Since muons are unusually penetrative of ordinary matter, like neutrinos, they are also detectable deep underground (700 meters at the Soudan II detector) and underwater, where they form a major part of the natural background ionizing radiation. Like cosmic rays, as noted, this secondary muon radiation is also directional.

The same nuclear reaction described above (i.e. hadron-hadron impacts to produce pion beams, which then quickly decay to muon beams over short distances) is used by particle physicists to produce muon beams, such as the beam used for the muon g − 2 experiment.[6]

Muon decay


The most common decay of the muon
Muons are unstable elementary particles and are heavier than electrons and neutrinos but lighter than all other matter particles. They decay via the weak interaction. Because lepton numbers must be conserved, one of the product neutrinos of muon decay must be a muon-type neutrino and the other an electron-type antineutrino (antimuon decay produces the corresponding antiparticles, as detailed below). Because charge must be conserved, one of the products of muon decay is always an electron of the same charge as the muon (a positron if it is a positive muon). Thus all muons decay to at least an electron, and two neutrinos. Sometimes, besides these necessary products, additional other particles that have a net charge and spin of zero (i.e. a pair of photons, or an electron-positron pair), are produced.

The dominant muon decay mode (sometimes called the Michel decay after Louis Michel) is the simplest possible: the muon decays to an electron, an electron-antineutrino, and a muon-neutrino. Antimuons, in mirror fashion, most often decay to the corresponding antiparticles: a positron, an electron-neutrino, and a muon-antineutrino. In formulaic terms, these two decays are:
\mu^-\to e^- + \bar\nu_e + \nu_\mu,~~~\mu^+\to e^+ + \nu_e + \bar\nu_\mu.
The mean lifetime of the (positive) muon is 2.197 019 ± 0.000 021 μs[7]. The equality of the muon and anti-muon lifetimes has been established to better than one part in 104.

The tree-level muon decay width is
\Gamma=\frac{G_F^2 m_\mu^5}{192\pi^3}I\left(\frac{m_e^2}{m_\mu^2}\right),
where I(x) = 1 − 8x − 12x2lnx + 8x3x4;  G_F^2 is the Fermi coupling constant.
The decay distributions of the electron in muon decays have been parameterised using the so-called Michel parameters. The values of these four parameters are predicted unambiguously in the Standard Model of particle physics, thus muon decays represent a good test of the space-time structure of the weak interaction. No deviation from the Standard Model predictions has yet been found.

Certain neutrino-less decay modes are kinematically allowed but forbidden in the Standard Model. Examples forbidden by lepton flavour conservation are
\mu^-\to e^- + \gamma and \mu^-\to e^- + e^+ + e^-.
Observation of such decay modes would constitute clear evidence for physics beyond the Standard Model (BSM). Current experimental upper limits for the branching fractions of such decay modes are in the range 10−11 to 10−12.

Muonic atoms

The muon was the first elementary particle discovered that does not appear in ordinary atoms. Negative muons can, however, form muonic atoms (also called mu-mesic atoms), by replacing an electron in ordinary atoms. Muonic hydrogen atoms are much smaller than typical hydrogen atoms because the much larger mass of the muon gives it a much smaller ground-state wavefunction than is observed for the electron. In multi-electron atoms, when only one of the electrons is replaced by a muon, the size of the atom continues to be determined by the other electrons, and the atomic size is nearly unchanged. However, in such cases the orbital of the muon continues to be smaller and far closer to the nucleus than the atomic orbitals of the electrons.

A positive muon, when stopped in ordinary matter, can also bind an electron and form an exotic atom known as muonium (Mu) atom, in which the muon acts as the nucleus. The positive muon, in this context, can be considered a pseudo-isotope of hydrogen with one ninth of the mass of the proton. Because the reduced mass of muonium, and hence its Bohr radius, is very close to that of hydrogen[clarification needed], this short-lived "atom" behaves chemically — to a first approximation — like hydrogen, deuterium and tritium.

Use in measurement of the proton charge radius

The recent culmination of a twelve year experiment investigating the proton's charge radius involved the use of muonic hydrogen. This form of hydrogen is composed of a muon orbiting a proton[8]. The Lamb shift in muonic hydrogen was measured by driving the muon from the from its 2s state up to an excited 2p state using a laser. The frequency of the photon required to induce this transition was revealed to be 50 terahertz which, according to present theories of quantum electrodynamics, yields a value of 0.84184 ± 0.00067 femtometres for the charge radius of the proton.[9]

Anomalous magnetic dipole moment

The anomalous magnetic dipole moment is the difference between the experimentally observed value of the magnetic dipole moment and the theoretical value predicted by the Dirac equation. The measurement and prediction of this value is very important in the precision tests of QED (quantum electrodynamics). The E821 experiment at Brookhaven National Laboratory (BNL) studied the precession of muon and anti-muon in a constant external magnetic field as they circulated in a confining storage ring. The E821 Experiment reported the following average value (from the July 2007 review by Particle Data Group)
a = \frac{g-2}{2} = 0.00116592080(54)(33)
where the first errors are statistical and the second systematic.

The difference between the g-factors of the muon and the electron is due to their difference in mass. Because of the muon's larger mass, contributions to the theoretical calculation of its anomalous magnetic dipole moment from Standard Model weak interactions and from contributions involving hadrons are important at the current level of precision, whereas these effects are not important for the electron. The muon's anomalous magnetic dipole moment is also sensitive to contributions from new physics beyond the Standard Model, such as supersymmetry. For this reason, the muon's anomalous magnetic moment is normally used as a probe for new physics beyond the Standard Model rather than as a test of QED (Phys.Lett. B649, 173 (2007)).

See also

References

  1. ^ K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010), URL: http://pdg.lbl.gov
  2. ^ Yukaya Hideka, On the Interaction of Elementary Particles 1, Proceedings of the Physico-Mathematical Society of Japan (3) 17, 48, pp 139-148 (1935). (Read 17 November 1934)
  3. ^ New Evidence for the Existence of a Particle Intermediate Between the Proton and Electron", Phys. Rev. 52, 1003 (1937).
  4. ^ David H. Frisch and James A. Smith, "Measurement of the Relativistic Time Dilation Using Muons", American Journal of Physics, 31, 342, 1963, cited by Michael Fowler, "Special Relativity: What Time is it?"
  5. ^ S. Carroll (2004). Spacetime and Geometry: An Introduction to General Relativity. Addison Wesly. p. 204
  6. ^ Brookhaven National Laboratory (30 July 2002). "Physicists Announce Latest Muon g-2 Measurement". Press release. http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr073002.htm. Retrieved 2009-11-14. 
  7. ^ [1]
  8. ^ TRIUMF Muonic Hydrogen collaboration. "A brief description of Muonic Hydrogen research". Retrieved 2010-11-7
  9. ^ Pohl, Randolf et al. "The Size of the Proton" Nature 466, 213-216 (8 July 2010)

External links


***
Comment on Backreaction made to Steven

Hi Steven

Would we not be correct to say that unification with the small would be most apropos indeed with the large?

Pushing through that veil.

My interest with the QGP is well documented, as it presented itself "with an interesting location" with which to look at during the collision process.

Natural Microscopic blackhole creations? Are such conditions possible in the natural way of things? Although quickly dissipative, they leave their mark as Cerenkov effects.

As one looks toward the cosmos this reductionist process is how one might look at the cosmos at large, as to some of it's "motivations displayed" in the cosmos?

What conditions allow such reductionism at play to consider the end result of geometrical propensity as a message across the vast distance of space, so as to "count these effects" here on earth?

Let's say cosmos particle collisions and LHC are hand in hand "as to decay of the original particles in space" as they leave their imprint noticeably in the measures of SNO or Icecube, but help us discern further effects of that decay chain as to the constitutions of LHC energy progressions of particles in examination?

Emulating the conditions in LHC progression, adaptability seen then from such progressions, working to produce future understandings. Muon detections through the earth?

So "modeled experiments" in which "distillation of thought" are helped to be reduced too, in kind, lead to matter forming ideas with which to progress? Measure. Self evident.

You see the view has to be on two levels, maybe as a poet using words to describe, or as a artist, trying to explain the natural world. The natural consequence, of understanding of our humanity and it's continuations expressed as abstract thought of our interactions with the world at large, unseen, and miscomprehended?

Do you think Superstringy has anything to do with what I just told you here?:)

Best,

    Hi Steven,

    Maybe the following will help, and then I will lead up to a modern version for consideration, so you understand the relation.

    Keep Gran Sasso in your mind as you look at what I am giving you.

    The underground laboratory, which opened in 1989, with its low background radiation is used for experiments in particle and nuclear physics,including the study of neutrinos, high-energy cosmic rays, dark matter, nuclear decay, as well as geology, and biology-wiki


    Neutrinos, get set, go!

    This summer, CERN gave the starting signal for the long-distance neutrino race to Italy. The CNGS facility (CERN Neutrinos to Gran Sasso), embedded in the laboratory's accelerator complex, produced its first neutrino beam. For the first time, billions of neutrinos were sent through the Earth's crust to the Gran Sasso laboratory, 732 kilometres away in Italy, a journey at almost the speed of light which they completed in less than 2.5 milliseconds. The OPERA experiment at the Gran Sasso laboratory was then commissioned, recording the first neutrino tracks.

    Because I am a layman, does not reduce the understanding that I can have, that a scientist may have.

    Now for the esoteric :)

    Secrets of the Pyramids In a boon for archaeology, particle physicists plan to probe ancient structures for tombs and other hidden chambers. The key to the technology is the muon, a cousin of the electron that rains harmlessly from the sky.

    What kind of result would they get from using the muon. What will it tell them?:)

    Best,

    Wednesday, October 28, 2009

    Fermi Records Lighthouse Effect

    John Keats talked of "unweaving the rainbow", suggesting that Newton destroyed the beauty of nature by analysing light with a prism and splitting it into different colours. Keats was being a prat. Physicists also smile when we see rainbows, but our emotional reaction is doubled by our understanding of the deep physics relating to the prismatic effects of raindrops. Similarly, physicists appreciate sunsets more than anybody else, because we can enjoy the myriad colours and at the same time grasp the nuclear physics that created the energy that created the photons that travelled for millions of years to the surface of the Sun, which then travelled eight minutes through space to Earth, which were then scattered by the atmosphere to create the colourful sunset. Understanding physics only enhances the beauty of nature.See:'Keats claimed physics destroyed beauty. Keats was being a prat'

    In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect, eliminating some approaches to a new theory of gravity. The animation link below shows the delay scientists had expected to observe. Credit: NASA/Sonoma State University/Aurore Simonnet
    See: Fermi Telescope Caps First Year With Glimpse of Space-Time

    "This measurement eliminates any approach to a new theory of gravity that predicts a strong energy dependent change in the speed of light," Michelson said. "To one part in 100 million billion, these two photons travelled at the same speed. Einstein still rules."

    What I want people to know now is that a question arises about "theoretical conclusions drawn" about joining, "Electromagnetism and Gravity." This basically what their saying?
    ***


    We see a pulsar, then, when one of its beams of radiation crosses our line-of-sight. In this way, a pulsar is like a lighthouse. The light from a lighthouse appears to be "pulsing" because it only crosses our line-of-sight once each time it spins. Similarly, a pulsar "pulses" because we see bright flashes every time the star spins. See: Pulsars
    Link to tutorial site has been taken down, and belongs to Barb of  http://www.airynothing.com

    For some it is not a hard thing to remember when the Sun, or a light has blinded one to seeing what is in front of you, it aligns to the realization, that if one shifts to the right or left, they can come out of the bright directional gaze of emissions from that other time.

    M87's Energetic Jet., HST image. The blue light from the jet emerging from the bright AGN core, towards the lower right, is due to synchrotron radiation.

    See Also: Light House Keeper as well as Label Lighthouse at bottom of Post entry.
    *** 

    Simple Jet Model. A simple model for a jet is a relativistic sphere emitting synchrotron radiation. This simple model hides the complexity of a real jet but can still be used to illustrate the principles of relativistic beaming.

    Electrons inside the blob(Crab Nebula) travel at speeds just a tiny fraction below the speed of light and are whipped around by the magnetic field. Each change in direction by an electron is accompanied by the release of energy in the form of a photon. With enough electrons and a powerful enough magnetic field the relativistic sphere can emit a huge number of photons, ranging from those at relatively weak radio frequencies to powerful X-ray photons.-(In brackets added by me)See: Relativistic beaming

    So the spectrum at this end reveals Gamma ray perspective that when considered under this watchful eye, reveals views of our Sun and views of the Cosmos of very different ranges used in that spectrum, still, shows the Sun.

    It is not so difficult to realize then how much energy is directed that one could say that what we had seen in the light effect can help spotters on ships realize the coastlines during those frightful storms at sea.

    (click on image for larger viewing)
    The bluish glow from the central region of the nebula is due to synchrotron radiation.

    Synchrotron radiation is electromagnetic radiation, similar to cyclotron radiation, but generated by the acceleration of ultrarelativistic (i.e., moving near the speed of light) charged particles through magnetic fields. This may be achieved artificially in synchrotronsstorage rings, or naturally by fast electrons moving through magnetic fields in space. The radiation produced may range over the entire electromagnetic spectrum, from radio wavesinfrared light, visible light, ultraviolet light, X-rays, and gamma rays. It is distinguished by its characteristic polarization and spectrum.

    Saturday, September 12, 2009

    Cosmic Origins Spectrograph in Hubble

    Credit: NASA

    Instrument Overview

    COS is designed to study the large-scale structure of the universe and how galaxies, stars and planets formed and evolved. It will help determine how elements needed for life such as carbon and iron first formed and how their abundances have increased over the lifetime of the universe.
    As a spectrograph, COS won’t capture the majestic visual images that Hubble is known for, but rather it will perform spectroscopy, the science of breaking up light into its individual components. Any object that absorbs or emits light can be studied with a spectrograph to determine its temperature, density, chemical composition and velocity.

    A primary science objective for COS is to measure the structure and composition of the ordinary matter that is concentrated in what scientists call the ‘cosmic web’—long, narrow filaments of galaxies and intergalactic gas separated by huge voids. The cosmic web is shaped by the gravity of the mysterious, underlying cold dark matter, while ordinary matter serves as a luminous tracery of the filaments. COS will use scores of faint distant quasars as ‘cosmic flashlights,’ whose beams of light have passed through the cosmic web. Absorption of this light by material in the web will reveal the characteristic spectral fingerprints of that material. This will allow Hubble observers to deduce its composition and its specific location in space. See: Hubble Space Telescope Service Mission 4- Cosmic Origins Spectrograph

    ***


     
    Cosmic Origins Spectrograph optical path: The FUV and NUV channels initially share a common path. The first optic is either a concave, holographically ruled diffraction grating which directs light to the FUV detector (red) or a concave mirror directing light to the NUV gratings and the NUV detector (purple). The green ray packets represent the FUV optical paths, and blue ray packets represent the NUV optical paths. A wavelength reference and flat field delivery system is shown at top left (orange ray packets) and can provide simultaneous wavelength reference spectra during science observations.
    See:Cosmic Origins Spectrograph

    Friday, August 01, 2008

    Light House Keeper

    Some will reconsider the effect that is portrayed here in terms of a mirror directed and reflects to one eyes, can cause an unsettling effect because of the focus of the beam.

    IN nature such a thing is an everyday occurrence as we catch such glimpses not only here in our everyday lives, but assign them to a cosmological occurrence as well. Now as illusive as the God nature of particles from space, whose energy considerations may be of value, they are very odd to such glimpses contained, and maybe even called "God particles.":)

    There is a limit to the knowledge, you have to remember and what is one to do when they invoke such a statement, to realize our knowledge is indeed limited? We theorize and we built gigantic devices for such measures, as to the certainty of our values assigned to those theoretics. It has to appear in some intellectual form before we can say yes they exist and the dependence on measure is what we are willing to build to become such realistic people.

    I tend to think such a thing is a "direct connection to to what the event is saying" not only in our lives as the decay process is the effect of all our psychological actions(emotive intellectual or spiritual), it is also the elemental consideration that such constituents are held together by "such a glue" whose measure is affected, and measured, by such a light.

    If light bends, what is it we are to saying about the path such a light has travelled that we would say "the light has an energy valuation to it" and such lensing occurs?

    The light then, becomes a gravitational indication of the space it travels through?

    Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87

    NASA's Hubble Space Telescope Yields Clear View of Optical Jet in Galaxy M87

    A NASA Hubble Space Telescope (HST) view of a 4,000 light-year long jet of plasma emanating from the bright nucleus of the giant elliptical galaxy M87. This ultraviolet light image was made with the European Space Agency's Faint Object Camera (FOC), one of two imaging systems aboard HST. This photo is being presented on Thursday, January 16th at the 179th meeting of the American Astronomical Society meeting in Atlanta, Georgia. M87 is a giant elliptical galaxy with an estimated mass of 300 billion suns. Located 52 million light-years away at the heart of the neighboring Virgo cluster of galaxies, M87 is the nearest example of an active galactic nucleus with a bright optical jet. The jet appears as a string of knots within a widening cone extending out from the core of M87. The FOC image reveals unprecedented detail in these knots, resolving some features as small as ten light-years across. According to one theory, the jet is most likely powered by a 3 billion solar mass black hole at the nucleus of M87. Magnetic fields generated within a spinning accretion disk surrounding the black hole, spiral around the edge of the jet. The fields confine the jet to a long narrow tube of hot plasma and charged particles. High speed electrons and protons which are accelerated near the black hole race along the tube at nearly the speed of light. When electrons are caught up in the magnetic field they radiate in a process called synchrotron radiation. The Faint Object Camera image clearly resolves these localized electron acceleration, which seem to trace out the spiral pattern of the otherwise invisible magnetic field lines. A large bright knot located midway along the jet shows where the blue jet disrupts violently and becomes more chaotic. Farther out from the core the jet bends and dissipates as it rams into a wall of gas, invisible but present throughout the galaxy which the jet has plowed in front of itself. HST is ideally suited for studying extragalactic jets. The Telescope's UV sensitivity allows it to clearly separate a jet from the stellar background light of its host galaxy. What's more, the FOC's high angular resolution is comparable to sub arc second resolution achieved by large radio telescope arrays.
    See:Hubble Site>

    Just to draw further comparison here for consideration in light of this thread I apologize, but it is of importance, just not in that blog posting space.

    The significance in our every day life of such a thing "catches the eye,"( thanks again Paul in regards to Snowboarders.) and we do not realize it. To find such cosmological comparisons is really interesting in the unfolding of the events. How significant?


    We see a pulsar, then, when one of its beams of radiation crosses our line-of-sight. In this way, a pulsar is like a lighthouse. The light from a lighthouse appears to be "pulsing" because it only crosses our line-of-sight once each time it spins. Similarly, a pulsar "pulses" because we see bright flashes every time the star spins.
    See: Pulsars
    Link to tutorial site has been taken down, and belongs to Barb of  http://www.airynothing.com
    See Also:Pulsars and Cerenkov Radiation

    So What Did I mean By Olympics?

    Monday, March 31, 2008

    What is AMS?



    General objectives:To collect precision cosmic ray data at high energies, including 10^10 protons; to discover or rule out certain particles as explanations for dark matter; to study cosmic ray propagation in the galaxy; to search for exotic particles or spectral features among cosmic rays
    See:AMS experiment mission overview

    The Alpha Magnetic Spectrometer Experiment

    AMS is a particle detector for the International Space Station. A group of high-energy physicists are taking their experimental expertise - acquired in thirty years of experience at particle accelerators - into orbit. Space is full of high-energy particles of many types (collectively called "cosmic rays"), many of them originating in supernova explosions in distant galaxies. AMS detects them using a huge superconducting magnet and six highly specialized, ultra-precise detectors. It will sit on the ISS main truss - far above the obscuring atmosphere, and making full use of the ISS's irreplaceable support systems - and gather data for three years.


    Long-Awaited Cosmic-Ray Detector May Be ShelvedBy DENNIS OVERBYE Published: April 3, 2007 The New York Times- Spacer and Cosmos

    Beyond the experiment itself, the standoff represents a clash between two of the more strong-willed and brilliant leaders of Big Science in America: Dr. Ting of the Massachusetts Institute of Technology, who is known for his autocratic management style and obsession with detail, and Michael D. Griffin, the NASA administrator, who has shown himself willing to make tough calls in reshaping the space program away from the shuttle and toward the Moon and Mars.


    Photographs by The AMS Collaboration

    NASA agreed in 1995 to carry the Alpha Magnetic Spectrometer to the space station. But now the agency says its remaining shuttle flights are booked.

    I have a thought to be considered here, that might spark some ideas about what happened to AMS. The question to my mind was whether this was more then political or money issue?

    Think of Dennis Overbye's article of 2007, in face of the current article presented of his.

    I thought along the way that this issue was resolved in regards to strangelets, and would had been "the issue" that solved allowed this to languish. But maybe there is more?

    Saturday, October 06, 2007

    PHENIX Muon Spectrometers




    At the RHIC beamline at Brookhaven National Laboratory, the three-story-tall PHENIX muon spectrometers, designed and built by Los Alamos scientists in collaboration with other scientists from around the world, witness collisions between gold ions (red/yellow, approaching from the right) and deuterons (white, coming in from the left). Two doughnut-shaped magnets (green) steer the ions in these 100-GeV-per-nucleon beams, traveling at 0.9999 the speed of light, into head-on collisions. In such high-energy collisions, the quarks and gluons that make up the protons and neutrons of the colliding particles interact directly. The collision shown here releases pions (purple), which are only partially stable; some of them decay into muons (white). Most of the pions are absorbed inside the hadron absorber (the green magnet). The detector panels (brown) track the muons.

    By studying the decay products of these collisions and their behavior, we learn about the fundamental physical laws governing the strong interactions in the universe. These laws and their effects were much more obvious in the high-energy state of the very early universe. The same physical laws hold just as much sway today, but their effects are much more subtle in the low-energy states in which we find most matter now. In order to tease out their effects and patterns, we attempt to recreate those earlier, high-energy and high-density conditions at places like RHIC and study them with detectors like the PHENIX
    .




    >
    Muon: An elementary particle with negative electric charge and a spin of ½. It has a lifetime of 2.2 µs, longer than any other unstable lepton, meson, or baryon except for the neutron. Because their interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons do not emit as much bremsstrahlung radiation; consequently, they are much more penetrating than electrons.